August 16th, 2019

Mr. Brandon Pursel and Ms. Melissa Blankenship U.S. Environmental Protection Agency, Region 5 77 West Jackson Boulevard Mail Code LU-16J Chicago, Illinois 60604-3507

Subject:

Conceptual Site Model (CSM) and Human Health Risk Assessment (HHRA)

ArcelorMittal Indiana Harbor Long Carbon

East Chicago, IN

Mr. Pursel and Ms. Blankenship:

ArcelorMittal USA LLC is timely submitting this CSM and HHRA for the Indiana Harbor Long Carbon (IHLC) property located in East Chicago, Indiana. This document has been prepared as the next step in the RCRA FIRST process in accordance with the U.S. EPA letter dated May 29th, 2019. If you have any questions please contact me at (330) 659-9124.

Regards,

Cary Mathias

Enclosures

cc: David Hagen, Haley & Aldrich, Inc.

HUMAN HEALTH RISK ASSESSMENT INDIANA HARBOR LONG CARBON PROPERTY EAST CHICAGO, INDIANA

by Haley & Aldrich, Inc. Boston, Massachusetts

for ArcelorMittal USA LLC

File No. 129719-007 August 2019

TABLE OF CONTENTS

			Page
List	of Tab	les	iv
List	of Acre	onyms	v
1.	Intro	oduction	1
	1.1	Site Description	1
	1.2	Project Objective	1
	1.3	Report organization	2
2.	Con	ceptual Site Model	3
	2.1	Land use	3
	2.2	Potential Receptors	4
	2.3	Exposure pathway evaluation	5
		2.3.1 On-Site Groundwater	5
		2.3.2 Off-Site Groundwater	6
		2.3.3 On-Site Surface Soil	7
		2.3.4 Off-Site Surface Soil2.3.5 On-Site Subsurface Soil	7
		2.3.6 Off-Site Subsurface Soil	8
		2.3.7 Sediment	8
		2.3.8 Indoor Air	8
		2.3.9 Outdoor Air	9
3.	Haza	ard Identification	10
	3.1	Data Summary Information	10
	3.2	Chemicals of Potential Concern	10
		3.2.1 Risk-Based Screening	11
		3.2.2 Essential Nutrients	11
		3.2.3 Summary of Screening	11
4.	Ехро	osure Assessment	13
	4.1	Potential Exposure Pathways	13
	4.2	Reasonable Maximum Exposure Scenarios	13
	4.3	Exposure Point Concentrations	15
	4.4	Calculation of Intake	16
5.	Toxi	icity Assessment	17
6.	Risk	Characterization	18

TABLE OF CONTENTS

				Page				
	6.1	Risk ch	haracterization Methodology	18				
	6.2	Risk Cl	haracterization Results	19				
		6.2.1	Future Industrial Worker	19				
		6.2.2	Future Re-development Construction Worker	19				
	6.3	Risk A	ssessment Qualitative Uncertainty Analysis	20				
		6.3.1	Hazard Identification	20				
		6.3.2	Exposure Assessment	21				
		6.3.3	Toxicity Assessment	21				
		6.3.4	Risk Characterization	22				
7.	Con	clusion	s	23				
8.	Refe	References						
Tab	les							
Figu	ıres							
App	endix .	A – Sun	mmary of Groundwater Analytical Results from the DS	SR				
App	endix	B – Ana	alytical Data Used in Risk Assessment					
App	endix	C – 95%	6 UCL Calculations					
App	endix	D – Inta	ake and Risk Calculations					

List of Tables

Table No.	Title
1	Summary of Exposure Pathways
2	Summary of Surface Soil Data (0 $-$ 2 ft bgs), Selection of COPCs and EPCs
3	Summary of Total Soil Data (0 $-$ 10 ft bgs), Selection of COPCs and EPCs
4	Summary of Hazard Index by Target Organ Effect
5	Comparison of Groundwater Data to Construction Worker Screening Levels

List of Figures

Figure No.	Title
1	Project Locus
2	Site Plan
3	Human Health and Ecological Conceptual Site Model
4	Soil Boring and Monitoring Well Locations

List of Acronyms

ASWQC Ambient Surface Water Quality Criteria

ATSDR Agency for Toxic Substances and Disease Registry

bgs Below ground surface CA Corrective Action

COCS Constituents of Concern
COPC Chemical of Potential Concern

CSF Cancer Slope Factor
CSM Conceptual Site Model
DQOs Data Quality Objectives
DSE Data Sufficiency Evaluation
DSR Data Summary Report
ELCR Excess Lifetime Cancer Risk
EPC Exposure Point Concentration

FIRST Facility Investigation Remedy Selection Track
HEAST Health Effects Assessment Summary Tables

HHRA Human Health Risk Assessment

HI Hazard Index
HQ Hazard Quotient
IHE Indiana Harbor East

IHLC
 Indiana Harbor Long Carbon
 IHSC
 Indiana Harbor Ship Canal
 ILCR
 Incremental Lifetime Cancer Risk
 IRIS
 Integrated Risk Information System

LOAEL Lowest-Observed-Adverse-Effect-Level

NCEA National Center for Environmental Assessment NCP National Contingency Plan

NOAEL No-Observed-Adverse-Effect-Level

NRC National Research Council

NRWQC National Recommended Water Quality Criteria

OAF Oral Absorption Factor

PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyls PEF Particulate Emission Factor

PPRTV Provisional Peer Reviewed Toxicity Value

QA/QC Quality Assurance/Quality Control

RAGS Risk Assessment Guidance for Superfund RCRA Resource Conservation and Recovery Act

RfCs Reference Concentrations

RfD Reference Dose

RFI RCRA Facility Investigation
RME Reasonable Maximum Exposure

RSL Regional Screening Level

SVOC Semivolatile Organic Compound SWMA Solid Waste Management Unit

UCL Upper Confidence Limit

URs Unit Risks

U.S. EPA United States Environmental Protection Agency VOC Volatile Organic Compound

1. Introduction

Haley & Aldrich, Inc. (Haley & Aldrich), on behalf of ArcelorMittal USA LLC (ArcelorMittal), has prepared this Risk Assessment in support of the Resource Conservation and Recovery Act (RCRA) Facility Investigation Remedy Selection Track (FIRST) process for the Indiana Harbor Long Carbon (IHLC) property (herein referred to as the "IHLC property"), a sub-parcel of the larger ArcelorMittal Indiana Harbor East (IHE) facility, located in East Chicago, Indiana (Figure 1, Project Locus).

1.1 SITE DESCRIPTION

The IHLC property includes former IHE Plant 4 (Solid Waste Management Unit [SWMA] 2) and is located at 3300 Dickey Road, Lake County, East Chicago, Indiana. The IHLC property is located in the southern "on-shore" portion of the IHE property, approximately 4,000 feet south of the original Lake Michigan shoreline (Figure 1). The IHLC property includes approximately 92 acres of the approximately 2,400-acre IHE property and comprises Lake County Parcel Nos. 45-03-21-201-001.000-024 (88.26 acres) and 45-03-16-451-001.000-024 (4.056 acres). A Site Plan showing general historical operations layout and features is included as Figure 2.

1.2 PROJECT OBJECTIVE

On 8 March 1993, ArcelorMittal (formerly Mittal Steel USA Inc., ISPAT Inland Inc. [ISPAT], and Inland Steel Company [Inland]) entered into a *Multimedia Consent Decree (Civil Action H90-0328)* with the United States Environmental Protection Agency (U.S. EPA) to address in part, RCRA Corrective Action (CA) requirements at ArcelorMittal's IHE facility (EPA ID. No. IND 005 159 199). Per the Consent Decree, ArcelorMittal is responsible for performing the RCRA CA Program as set forth in Section VII of the Consent Decree and associated Appendices (I through V).

The IHLC facility shut-down operations in 2015 and the IHLC property was transferred to ArcelorMittal's corporate Real Estate and Environmental Group and is being marketed for sale/redevelopment. To assist in and to expedite the marketability and sale of the IHLC property, ArcelorMittal is separating the on-Site RCRA CA obligations from those of the ongoing IHE facility-wide RCRA CA mentioned above. ArcelorMittal is performing an accelerated RCRA CA on the IHLC property utilizing the U.S. EPA's recently published RCRA FIRST – A Toolbox for Corrective Action (U.S. EPA, 2016a). The RCRA FIRST toolbox was developed using Lean techniques to improve the efficiency of the RCRA CA process.

On 30 May 2018, ArcelorMittal submitted a RCRA Facility Investigation (RFI) Data Sufficiency Evaluation (DSE), outlined in RCRA FIRST Tool 4, to the U.S. EPA to demonstrate project Data Quality Objectives (DQOs) have been satisfied for the IHLC property, and that the data are sufficient to proceed to the next step in the RCRA FIRST process (Haley & Aldrich, 2018). The U.S. EPA responded with comments to the Evaluation on 19 July 2018 (July 2018 Comment Letter). ArcelorMittal responded to the U.S. EPA's comments on 11 January 2019 and agreed to complete verification sampling as next step efforts to complete Corrective Action (ArcelorMittal, 2019).

The goals of the verification sampling activities were to:

- Collect groundwater samples to determine if constituents of concern (COCs) in groundwater are stable or decreasing; and
- Collect surface and subsurface soil samples to facilitate the completion of the property-specific Conceptual Site Model (CSM) and Human Health Risk Assessment (HHRA) for the IHLC property.

ArcelorMittal submitted a Data Summary Report (DSR) to U.S. EPA on 17 May 2019; the DSR detailed the findings of verification sampling activities (Haley & Aldrich, 2019). On 29 May 2019, U.S. EPA provided concurrence with the recommendations of the DSR, indicating that ArcelorMittal should proceed with the next steps of the RCRA FIRST process, which are to update the CSM and develop the HHRA (U.S. EPA, 2019a).

1.3 REPORT ORGANIZATION

Section 2 of this report provides a CSM; the CSM is an update of the CSM that was provided in the DSE. As documented in the CSM, there is limited to no quality habitat for environmental receptors at the Site, and the foreseeable use of the Site will continue to offer limited to no quality habitat for environmental receptors. Furthermore, as documented in Section 2, groundwater verification sampling performed in 2019 has supported the conclusions of previous risk assessments for the Site, which demonstrated that Site groundwater did not pose unacceptable risks to aquatic receptors in adjacent surface waters. Therefore, the remainder of the risk assessment focusses on potential risk to human health.

Sections 3 through 6 of this report present the four steps of the HHRA process:

- Data Evaluation (Section 3)
- Exposure Assessment (Section 4)
- Toxicity Assessment (Section 5)
- Risk Characterization (Section 6)

These components of the risk assessment are presented for exposure pathways that are determined to be potentially complete in the CSM (Section 2). Section 7 provides a summary and conclusions of the HHRA. Supporting documentation of the risk assessment methods, inputs, and results are provided in tables, figures, and appendices to this document. References are provided at the end of the document.

2. Conceptual Site Model

The CSM describes the sources and potential migration pathways through which Site-related constituents may have been transported to other environmental media, and the human and environmental receptors that may in turn contact the environmental medium. The linkage between an environmental medium and potential exposure is called an exposure pathway. The CSM is used to guide the identification of appropriate exposure pathways and receptors for evaluation in the risk assessment.

The DSE provided a CSM for the Site; the CSM included a presentation and summary discussion of:

- Physical features and physiography, geology, and hydrogeology;
- Corrective Action program status;
- Phase I and II RFI status and results; and
- Land uses, receptor populations, and potential exposure pathways.

Based on the CSM provided in the DSE, U.S. EPA identified three data gaps:

- 1. Current groundwater conditions near historical source areas;
- 2. Soil quality as related to potential direct contact exposures; and
- 3. Indoor air quality as related to potential vapor intrusion into facility buildings.

These data gaps were addressed through responses to EPA's comments on the DSE and verification sampling that was performed in 2019 and summarized in the DSR.

The CSM presented in this report incorporates the results of the verification sampling to identify potential exposure pathways to residual Site-related constituents present in soil and groundwater at the Site. The following sections identify current and future land use, potentially exposed populations, and potential exposure pathways.

2.1 LAND USE

The IHLC property is located in a heavy industrial area of East Chicago, Indiana, approximately 4,000 feet south of the Lake Michigan shoreline. The IHLC property includes former IHE Plant 4, which was constructed in the early 1940s, during World War II, to produce cast armor for use in military battle tanks. Because the plant was initially constructed as a cast armor plant, there are few sub-grade structures (e.g., pits, trenches, sumps) present that are typical of steel mills. Further, much of the now vacant property is covered by asphalt/concrete pavement, rail spurs, access roads, and structures. In addition, Plant 4 was constructed predominantly on the original Lake Michigan shoreline and in general only two to five feet of fill material underlies the IHLC property. Access to the IHLC property is highly controlled through security fencing and 24-hour guarded checkpoint entry; and therefore, the occurrence of trespassers on the IHLC property is highly unlikely.

IHLC is bound on the west by the Indiana Harbor Ship Canal (IHSC), to the east by Dock Street and rail lines followed by Chrome LLC, to the north by Dickey Road and former Plant 3, and to the south by American Terminals and Kemira. According to the most recently available zoning classifications for the City of East Chicago, Indiana (2003), adjacent properties to the IHLC property are zoned heavy industrial. There are no residential land uses associated with properties adjacent to the Site. The IHSC is located adjacent west of the Site, which although unlikely, may be used for recreational purposes. Further, the

following are neither located on the IHLC property nor located within the immediate vicinity of the IHLC property:

- Day-care facilities;
- Residences;
- Ecological receptors (excluding the ISHC); and
- Food sources.

Given that the facility and surrounding properties are heavily industrialized, with much of the land covered by structures and pavement, there is no terrestrial habitat.

Groundwater under the IHLC property and in the adjacent areas is not currently used for potable purposes, and there are no known plans to use groundwater for such purposes in the future. Further, there are no known or expected incidental uses of groundwater in adjacent areas for uses such as irrigation or industry. Drinking water in the area is provided by the city of East Chicago whose public water supply intake structure is located in Lake Michigan approximately one-half mile north of the original shoreline and one-half mile from the eastern boundary of the IHE facility.

ArcelorMittal plans to sell the property for industrial re-use, which will propitiously create jobs to support the local economy. Further, redevelopment of the now vacant property will be aesthetically positive for the surrounding community. ArcelorMittal has begun marketing the IHLC property and has had positive discussions with potential buyers looking to redevelop the property and facility. Institutional controls will be used to ensure that the land remains industrial use.

2.2 POTENTIAL RECEPTORS

Based on the information presented herein, and the results of the evaluation presented in *the EI Determination* (Earthtech, 2005) and *Phase I and II RFIs* (AECOM, 2009; 2012) as they pertain to the IHLC property, the potential receptors under current and future industrial property use conditions are as follows:

- Re-development construction workers at the IHLC property;
- Construction/utility workers at adjacent industrial properties;
- Industrial workers at the IHLC property;
- Industrial workers at adjacent industrial properties;
- Recreational users of surface water bodies situated adjacent to the IHLC property; and
- Aquatic life in surface water bodies situated adjacent to the IHLC property.

Due to institutional controls that will be placed on the property, human populations other than industrial workers and construction/utility workers will not be present at the IHLC property. In addition, because there is no terrestrial habitat at the IHLC, terrestrial mammals and birds are not identified as potential receptors at the Site.

2.3 EXPOSURE PATHWAY EVALUATION

Exposure pathways describe the course chemicals may take from the source to the exposed individual. For an exposure pathway to be complete, the following conditions must exist (as defined by U.S. EPA [1989]):

- 1. A source and mechanism of chemical release to the environment;
- 2. An environmental transport medium;
- 3. A point of potential contact with the receiving medium by a receptor; and
- 4. A receptor exposure route at the contact point.

Exposure routes include:

- Incidental ingestion;
- Dermal contact; and
- Inhalation of dust and vapor.

If any of these conditions are not present, the exposure pathway is not complete, and exposure to constituents in the exposure medium cannot occur. Potential exposure pathways for the receptors identified in section 2.2 are evaluated below. A summary of exposure pathways and rationale for why pathways are potentially complete, or incomplete is provided in Table 1, and a graphical depiction of exposure pathways is provided in Figure 3.

2.3.1 On-Site Groundwater

Presently, there are no exposures to on-Site groundwater because the facility is not actively being used and no construction activities are occurring. Any utility or construction activities that may be required under current conditions are controlled by way of institutional controls on workers involved in excavations and related dewatering activities. Ispat Inland Policy No. 261, Procedure ENV-P-021, and Ispat Inland Compliance Program for 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, formalize IHLC's (formerly Inland's) excavation permitting and worker protection program. The program establishes a permitting framework and general requirements and responsibilities to ensure that excavation and de-watering activities at the IHW are handled in a manner that is consistent with the hazardous waste regulations and minimizes the potential for worker exposure to potentially hazardous environmental contaminants.

Under future conditions which assume that IHLC's institutional controls are not in place, re-development construction workers are assumed to potentially contact groundwater during excavation activities. The Phase II RFI evaluated potential exposures to groundwater by construction/utility workers using a tiered risk-based screening process (AECOM, 2009). The process involved comparison of constituent concentrations in groundwater directly to risk-based screening levels protective for direct contact with groundwater (Tier 1A screening). The risk-based screening levels were based on a generic assumption that an adult worker would drink one liter of groundwater per day and were derived for an excess lifetime cancer risk (ELCR) of 1x10⁻⁵ and a target HI of one (1). These values are conservative for application to construction workers because construction workers would only be exposed dermally to groundwater during intrusive excavation activities.

Groundwater verification sampling performed in 2019 demonstrated that constituent concentrations had generally decreased and that only arsenic and benzene were detected in Site groundwater at concentrations above the Tier 1A screening levels. Therefore, direct contact exposure pathways to

groundwater for future on-Site construction workers were evaluated as potentially complete. Appendix A provides a comparison of the groundwater sampling data to the Tier 1A criteria.

Future on-Site industrial workers would not be exposed to contaminated groundwater during the course of their daily work activities. As stated previously, groundwater is not used at the IHLC property as a potable or non-potable water supply. Therefore, this exposure pathway is incomplete.

2.3.2 Off-Site Groundwater

Groundwater at the IHLC property is the environmental medium that has the greatest potential for causing contaminant migration to off-Site locations. Therefore, the medium is most likely to be associated with potentially complete exposure pathways for off- Site receptors. Properties adjacent to the IHLC property are industrial, and the adjacent water body (IHSC) could be used for recreational purposes. Therefore, exposure pathways are potentially complete for the following receptor groups:

- Recreational users who may incidentally contact constituents in groundwater that migrate to off-Site surface waters (IHSC), during recreational uses of the surface water.
- Aquatic life that may be exposed to constituents in groundwater that migrate to off-Site surface waters (IHSC).
- Off-Site construction/utility workers exposed to groundwater and associated saturated subsurface soils as a result of groundwater migrating from the IHLC property to adjacent off-Site construction sites where excavations are involved.

The Phase II RFI documented that the probability of recreational-based exposure to surface water adjacent to the IHLC is low to non-existent because the IHSC is an industrial shipping channel with confined physical space that is not amenable to nor aesthetically inviting for swimming or recreational boating. Nevertheless, Tier 1A screening criteria used to evaluate perimeter groundwater data in the Phase II RFI were based on human health criteria applicable to surface water, including IDEM ambient surface water quality criteria (ASWQC) and U.S. EPA National Recommended Water Quality Criteria (NRWQC) (AECOM, 2009). Those criteria are protective for use of surface water for swimming and fishing (i.e., consumption of fish that may bioaccumulate constituents from surface water bodies), as well as protection of aquatic life.

The Phase II RFI also developed Tier 1B screening criteria, which were based on application of a dilution attenuation factor to the Tier 1A screening criteria. Use of a dilution attenuation factor is appropriate for evaluation of potential exposures to Site-related constituents in groundwater that is migrating to surface water or to off-Site locations because constituent concentrations measured in on-Site perimeter groundwater would be diluted by the time the groundwater migrated to off-Site locations or to surface water.

Groundwater verification sampling performed in 2019 demonstrated that, with the exception of benzene at location IMW-03-00004, no constituents were detected in Site perimeter groundwater monitoring locations at concentrations above the Tier 1B screening levels. With respect to location IMW-03-00004, benzene detections were above the Tier 1B ecological screening values. However, monitoring wells between IMW-03-00004 and the nearest surface water body did not exhibit benzene concentrations above Tier 1B ecological screening values. Therefore, there are no significant exposure pathways to groundwater for off-Site construction workers, or for recreational uses and aquatic life in surface waters where Site groundwater may be migrating. Appendix A provides a comparison of the verification groundwater sampling data to the Tier 1B criteria.

2.3.3 On-Site Surface Soil

Surface soils are defined as soil from ground surface to a depth of two feet below ground surface. Potential impacts associated with other former facility operations and with incidental spills may have occurred on the IHLC property. However, much of the IHLC property is covered with concrete, asphalt, or industrial structures, thereby minimizing the probability of direct contact with surface soils. Under current condition, the facility is idle and secured, so any contact with unpaved surface soils (e.g., by a trespasser) would be infrequent and incidental in nature. Under future industrial uses of the Site, potential exposures to areas of soil that are not paved could hypothetically occur.

- Future On-Site Industrial Workers: Future industrial workers at the IHLC property are expected
 to have minimal exposure to surface soils during the course of their daily work activities.
 However, work activities that are performed in unpaved areas could potentially result in
 incidental ingestion and dermal contact with surface soil, as well as inhalation of dust and vapor
 that may be released from surface soil.
- Construction Worker: Under future conditions which assume that IHLC's institutional controls
 are not in place, re-development construction workers are assumed to potentially contact
 surface soil during construction activities. Exposure to surface soil could occur through
 incidental ingestion and dermal contact, and inhalation of dust and vapor that may be released
 from surface soil.

2.3.4 Off-Site Surface Soil

ArcelorMittal has significant programs which control storm water run-off and fugitive dust emissions including a Storm Water Pollution Prevention Plan, which controls run-off to adjacent surface waters to the extent possible and includes Quarterly Inspections of the perimeter, and a Dust Control Plan which controls fugitive dust from roads, material storage piles, processing operations and material transfer activities. Due to the current and on-going implementation of these policies and procedures, this exposure pathway is incomplete.

However, under future use conditions that assume the controls that ArcelorMittal has put in place no longer exist, constituents in unpaved surface soils on the ArcelorMittal property could hypothetically migrate to adjacent properties via wind erosion and particulate transport. Given the relatively small areas of unpaved soil at the IHLC, dust generation and off-Site transport of particulates is unlikely to be significant. In addition, most of the ground in surrounding properties is covered with pavement and structures, so even if particulate transport from the IHLC occurs, the probability of off-Site industrial workers having direct contact with constituents originating from IHLC unpaved surface soils is very low. Consequently, this exposure pathway is considered to be incomplete.

2.3.5 On-Site Subsurface Soil

Subsurface soils are defined as those below a depth of 2 feet below ground surface. Any utility or construction activities that may be required under current conditions are controlled by way of institutional controls on workers involved in excavations, as described in subsection 2.3.1.

- Future On-Site Industrial Workers: Future industrial workers at the IHLC property are not
 expected to have exposure to subsurface soils, as they would not be involved in excavation
 activities. Therefore, there are no complete exposure pathways to subsurface soil for future onSite industrial workers.
- Construction Worker: Under future conditions which assume that IHLC's institutional controls
 are not in place, re-development construction workers are assumed to potentially contact
 subsurface soil during construction activities. Exposure to subsurface soil could occur through
 incidental ingestion and dermal contact, and inhalation of dust and vapor that may be released
 from surface soil.

2.3.6 Off-Site Subsurface Soil

Based on the absence of historical operational practices at the IHLC property that would have directly resulted in significant off-Site subsurface soil contamination, the only mechanism for such contamination is through the migration of contaminated groundwater from the IHLC property to off-Site locations. As discussed in section 2.3.2, exposure pathways related to migration of IHLC property groundwater to off-site locations are insignificant. Therefore, the off-Site subsurface soil exposure pathway is incomplete.

2.3.7 Sediment

There are no on-Site surface waters and thus, no associated on-Site sediments at the IHLC property. The surface waters and sediments of the IHSC have been impacted by numerous industrial and municipal discharge of contaminants. However, with regard to sediments, the U.S. EPA and ArcelorMittal have agreed that relative to RCRA Corrective Action at the IHE facility, assessment of the IHSC and Indiana Harbor sediments is not relevant because sheet pile revetments are in place and are maintained by ArcelorMittal to prevent future impacts to the IHSC from the IHE facility. In addition, dredging work is to be completed in the IHSC by the US. Army Corp of Engineers with funds supplied PRPs.

2.3.8 Indoor Air

The potential for impacts to indoor air quality at the IHLC property is primarily dependent upon two factors: 1) the presence of significantly contaminated soil or groundwater in close proximity to structures, and 2) the physical characteristics of the structures.

While no direct measurements of the potential presence of volatile contaminants in indoor air have been conducted during RFI investigations, groundwater data that have been collected provide an indirect measure of the location and magnitude of potential indoor air exposures. In those areas outside of the former coking byproduct recovery and processing areas, including the IHLC property, structures are typically very large in size with very high rates of air exchange, thus indicating that vapor intrusion to indoor air (if VOCs were present at significant concentrations in groundwater or soil) is not a significant exposure pathway.

On 16 October 2018, ArcelorMittal along with representatives from the U.S. EPA Region 5, performed a walk-through of the IHLC property. Based on observations and statements made by the U.S. EPA, and in accordance with the OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (U.S. EPA, June 2015), Section 2.4 (Air Exchange and Mixing), for the vapor intrusion scenario, considering the significant size, air infiltration, and natural ventilation of the current property building, any potential effects of vapor intrusion of vapor-forming chemicals will be mitigated via dilution. Therefore, the vapor intrusion pathway is considered to be insignificant.

Groundwater flows from the IHLC property into the IHSC. Similarly, as indicated in the EI Determination (Earth Tech, 2005) during Phase I and Phase II RFI activities in the vicinity of FPA 6, concentrations of VOCs at the facility perimeter were found to be low or non-detect. In order for vapor intrusion to be a potential concern for the industrial setting present at/around the IHLC property, VOC concentrations in groundwater would typically have to be orders of magnitude higher than those detected in FPA 6. Therefore, the vapor intrusion pathway in off-Site properties is not significant with respect to potential sources of VOCs at the IHLC property.

2.3.9 Outdoor Air

As indicated in the EI Determination (Earth Tech, 2005), the potential for "contaminated" outdoor air at the IHLC property is primarily dependent upon the presence of significantly contaminated soil or groundwater in close proximity to the potentially exposed receptors combined with a limited amount of air exchange in the area. While no direct measurements of the potential presence of volatile contaminants in outdoor air have been conducted during the RFI, groundwater data and soil data that have been collected provide an indirect measure of the location and magnitude of potential outdoor air exposures. In order for elevated concentrations of VOCs to be present in outdoor air at levels exceeding risk-based human health criteria in the industrial setting present at/around the IHLC property, their respective concentrations in groundwater and soil would typically have to be orders of magnitude higher than those detected on-Site.

Therefore, based upon the considerations presented above, exposure pathways to Site-related constituents in outdoor air are insignificant.

3. Hazard Identification

3.1 DATA SUMMARY INFORMATION

Soil data used to identify COPCs at the Site were provided in the DSR and are summarized below. As described in the DSR, the data used in this HHRA are sufficient in quality and quantity to perform this HHRA and to make risk management decisions for the Site. Soil samples were collected at the Site during an investigation conducted in 2019.

Soil borings were advanced at ten locations with unpaved soil (Figure 4). The borings were advanced to approximately ten feet below surface grade and split-spoon samples were collected. Two soil samples were collected from each soil boring and were submitted to the project laboratory for analysis. One soil sample from each soil boring was collected from the surface (zero to two feet), and a second soil sample was selected based on field observations and headspace screening or was collected from the two-foot interval immediately above groundwater.

Soil samples, along with field duplicates and matrix spike/matrix spike duplicates, collected for quality assurance/quality control (QA/QC), were packaged and shipped under proper chain-of-custody procedures to TestAmerica Laboratories, Inc. (TestAmerica) in North Canton, Ohio. Samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total metals, sulfide, and cyanide in accordance with Project Target Parameters, Appendix IX Analytes.

The analytical data for surface soil (zero to two feet bgs) and total soil (surface and subsurface soil combined, to a depth of ten feet bgs) were summarized separately to identify the frequency of detection (number of positively detected results/total number of results), the range of reporting limits for non-detect values, and the range of detected concentrations. The following procedures were applied when summarizing the analytical data:

- Only analytes that were positively detected in at least one sample were included in the data summary.
- Results qualified as estimated ("J" qualified) were used in the risk assessment.
- Data for field duplicate samples were included as individual sample results.

The analytical data summaries for surface and total soil are provided in Tables 2 and 3, respectively. Section 3.2 provides the methods used to review these data sets to select COPCs.

3.2 CHEMICALS OF POTENTIAL CONCERN

COPCs are chemicals that are retained for further evaluation in the HHRA. A concentration-toxicity screening is used to reduce the number of chemicals evaluated in the risk assessment to only those that would potentially pose more than a *de minimis* health risk (U.S. EPA, 1989). The procedure used to select COPCs for the HHRA is summarized as follows, and is consistent with U.S. EPA methodology (U.S. EPA, 1989; 2019). The COPC selection is documented on Tables 2 and 3:

 If the maximum detected concentration is below risk-based screening levels (i.e., Regional Screening Levels (RSLs), U.S. EPA, 2019b), the detected chemical may be eliminated as a COPC.

- 2. If the maximum detected concentration exceeds the risk-based screening level, or if no screening level exists, the analyte is selected as a COPC.
- 3. If the detected chemical is considered an essential nutrient, it may be excluded as a COPC.

Further details on the COPC selection methodology are provided below. A summary of the COPC selection results is provided in Section 3.2.3.

3.2.1 Risk-Based Screening

The maximum detected concentration of each chemical is compared to the appropriate human health risk-based screening value. These screening values represent concentrations at or below which there is no potential health concern. For the surface and subsurface soil data sets, screening was conducted using the U.S. EPA RSLs for industrial soil (U.S. EPA, 2019b). The industrial soil RSLs are based on upper-bound exposure assumptions for direct contact with soil (incidental ingestion and dermal contact), dust inhalation, and ambient vapor inhalation, and therefore are protective screening criteria.

RSLs used for screening are based on a target cancer risk of 1E-06 and a target hazard quotient of 0.1. The exception to this is for lead: due to toxicity characteristics, the RSL value for lead is not reduced by a factor of 10 because risk associated with lead is not additive with risk for other constituents.

The results of the screening against RSLs (shown on Tables 2 and 3) are as follows:

- For surface soil from zero to two feet bgs, eight constituents were selected as COPCs. Four of these constituents (methyl cyclohexane, carbazole, dimethyl phthalate, and sulfide) were retained as COPCs because RSLs have not been published for them.
- For total soil (zero to ten feet bgs), eight constituents were selected as COPCs. Four of these constituents (methyl cyclohexane, carbazole, dimethyl phthalate, and sulfide) were retained as COPCs because RSLs have not been published for them.

3.2.2 Essential Nutrients

Metals detected in soil which are considered essential human nutrients were eliminated as COPCs, in accordance with U.S. EPA Risk Assessment Guidance (RAGS Part A, 1989). These metals include:

- Magnesium
- Sodium

These essential nutrients are not further evaluated as COPCs in this human health risk assessment. Iron is also considered to be an essential nutrient; however, U.S. EPA has published toxicity values and an RSL for iron and therefore it was evaluated using the risk-based screening process (Section 3.2.1).

3.2.3 Summary of Screening

COPCs selected for surface and subsurface soil are indicated in Tables 2 and 3 and listed below.

COPCs	Surface Soil (0 to 2 ft bgs)	Total Soil (0 to 10 ft bgs)
VOCs		
Methyl cyclohexane	Х	Х

COPCs	Surface Soil (0 to 2 ft bgs)	Total Soil (0 to 10 ft bgs)
SVOCs		
Carbazole	x	Х
Dimethyl phthalate	x	х
Inorganics		
Sulfide	x	Х
Arsenic	x	Х
Iron	x	Х
Manganese	x	Х
Thallium	x	Х

4. Exposure Assessment

This risk assessment is being conducted to evaluate potential future conditions, in advance of potential sale and redevelopment of the Property. Therefore, the evaluation is focused on future, rather than current, use. The CSM (Section 2) identified the populations of humans that may potentially use or access the Site under proposed future land use conditions and the potentially complete exposure pathways. This exposure assessment focuses on describing the methods that are used to quantify exposures through each of the potentially complete exposure pathways identified in the CSM. Exposures are quantified by developing receptor exposure scenarios, identifying exposure point concentrations, and then calculating chemical intakes.

These components are described in the sections below.

4.1 POTENTIAL EXPOSURE PATHWAYS

There are three exposure routes by which humans can be exposed to COPCs in soil: ingestion, dermal contact, and inhalation of fugitive dust and vapor that may be released from soil. Complete exposure pathways for future receptors at the Property, as defined in Section 2, are as follows:

Receptor	Exposure Point	Exposure Pathway			
Industrial Worker	Surface Soil (0 – 2 ft. bgs)	- Dermal Contact - Incidental ingestion			
	Surface Soil (0 – 2 ft bgs)	- Particulate (dust) inhalation			
Construction Worker	Total Soil (0 – 10 ft bgs)	- Ambient vapor inhalation			
Construction Worker	Crowndowater	- Dermal Contact			
	Groundwater	- Incidental ingestion			

Incomplete or insignificant exposure pathways at the Site, which are not further evaluated in this risk assessment, include the following:

- Potable or non-potable uses of groundwater. Extraction and use of groundwater for any purposes is prohibited, in accordance with the Institutional Controls.
- Direct contact with constituents in groundwater that may migrate to surface water. Constituents in groundwater are below risk-based screening levels protective for recreational and angling exposures to surface water, as well as aquatic life exposures to surface water.
- Vapor intrusion to indoor air from soil or groundwater. Considering the significant size, air
 infiltration, and natural ventilation of the current property building, any potential effects of
 vapor intrusion of vapor-forming chemicals will be mitigated via dilution.

4.2 REASONABLE MAXIMUM EXPOSURE SCENARIOS

Exposure scenarios are used to quantitatively describe the COPC exposures that could theoretically occur for each land use and exposure pathway evaluated. The exposure scenarios are used in conjunction with exposure point concentration (EPCs; section 4.3) to derive quantitative estimates of COPC intake or exposure. For each receptor population, the RME was quantified. The RME is defined by the U.S. EPA as the highest exposure that is reasonably expected to occur at a Site (U.S. EPA, 1989). It should be noted that the intent of the RME is to provide a conservative estimate of exposure, which is well above the average exposure but still within the range of plausible exposures. The RME is

determined using upper bound estimates (i.e., 90th to 95th percentile values) for key exposure parameters.

As such, a single exposure scenario is often selected to provide a conservative evaluation for the range of possible receptors and populations that could be exposed at the Site under a given land use. When evaluating industrial land use, an industrial workers scenario that is modeled to be protective for the adults who work at the Site full time is protective for all other receptor populations who may access the Site (such as visitors, contractors, landscaper workers) and, therefore, it unnecessary to also evaluate those other, less-exposed, receptor populations. For this reason, two exposure scenarios are evaluated in this HHRA to conservatively capture the range of potential exposures that could hypothetically occur under the re-developed land use.

The two exposure scenarios evaluated in this risk assessment are as follows:

- Industrial Worker: This scenario models high frequency, 'outdoor' exposure to soil over a long period of time. Standard U.S. EPA default exposure factors for a commercial worker scenario are used, which assume that an adult is exposed to soil via incidental ingestion, dermal absorption, and dust and vapor inhalation under the following conditions (U.S. EPA, 2014):
 - Exposures occurring 8 hours per day, 250 days per year, for 25 years
 - Incidental soil ingestion rate of 100 mg/day
 - Dermal contact with soil over a surface area of 3,527 cm² and an adherence factor of 0.12 mg/cm².
- Construction Worker: This scenario models adult workers who are assumed to be engaged in short-term, high frequency, high intensity exposure to soil during soil handling/earth work activities. The scenario assumes that an adult is exposed to soil via incidental ingestion, dermal absorption, and dust and vapor inhalation, as well as groundwater by incidental ingestion and dermal absorption, and is used to evaluate whether there could be health risks of concern for construction workers engaged in re-development work. The scenario is protective for workers who may be involved in shorter term intrusive utility or excavation work after re-development. Although exposure pathways may be complete for both surface soil and subsurface soil, the exposure scenario evaluates potential exposures to total soil (soil zero to ten feet bgs) because the scenario is intended to reflect exposures associated with soil excavation activities, which are assumed to involve soil within the top ten feet of ground surface. Exposure parameters used to evaluate construction worker exposure to soil are U.S. EPA default values (U.S. EPA, 2002a; 2019) and are as follows:
 - Exposures occurring 8 hours per day, 5 days per week, for 50 weeks
 - Incidental soil ingestion rate of 330 mg/day
 - Dermal contact with soil over a surface area of 3,527 cm² and an adherence factor of 0.3 mg/ cm².

Since U.S. EPA does not publish default exposure factors for evaluating construction worker exposures to groundwater, exposure parameters were selected using professional judgement, as follows:

- Exposures occurring 8 hours per day, 5 days per week, for 25 weeks, under the
 assumption that contact with groundwater would occur on no more than one-half the
 work-days;
- Incidental groundwater ingestion rate of 0.01 liters per day, based on the value used to derive the Tier 1B groundwater direct contact values (AECOM, 2009); and

 Dermal contact with soil over a surface area of 3,527 cm², based on the dermal surface area value used for soil.

4.3 EXPOSURE POINT CONCENTRATIONS

The U.S. EPA defines the EPC as the representative chemical concentration a receptor may contact at an exposure point over the exposure period (U.S. EPA, 1989). The typical concept of human exposure within a defined exposure point is that an individual contact the contaminated medium on a periodic and random basis. Because of the repeated nature of such contact, the human exposure does not generally occur at a fixed point but rather at a variety of points with equal likelihood. Thus, the EPCs should be the arithmetic averages of the COPC concentrations. However, to account for uncertainty in estimating the arithmetic mean concentration, the U.S. EPA recommends that an upper confidence limit (UCL) be used to represent the EPC.

In accordance with U.S. EPA guidance, UCL95 values were calculated using U.S. EPA ProUCL Statistical Software for Environmental Applications version 5.0.02 (U.S. EPA, 2016b). The ProUCL software performs a goodness-of-fit test that accounts for data sets without any non-detect observations, as well as data sets with non-detect observations. The software then determines the distribution of the data set for which the EPC is being derived (e.g., normal, lognormal, gamma, or non-parametric), and then calculates a conservative and stable 95% UCL value in accordance with the framework described in "Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites" (U.S. EPA, 2002b). The software includes numerous algorithms for calculating 95% UCL values and provides a recommended UCL value based on the algorithm that is most applicable to the number of data points and statistical distribution of the data set. When ProUCL recommended more than one UCL for use, the highest of the recommended values was conservatively selected as the representative 95% UCL. ProUCL does not calculate 95% UCL values when a constituent is detected fewer than two times in an exposure point data set. ProUCL calculations are provided in Appendix C.

In accordance with U.S. EPA guidance, the exposure point concentration to evaluate Reasonable Maximum Exposure (RME) was selected as the lower of the calculated 95% UCL, or the maximum detected concentration. EPCs for surface soil and total soil are provided in Tables 2 and 3.

For groundwater, the maximum detected concentration from the most recent sampling round is used as the EPC.

EPCs that are used to evaluate inhalation exposures to dust and vapor from soil must be modeled from source media (i.e., soil) concentrations. The basis of modeled EPCs used in the HHRA is described below; modeling documentation is provided in Appendix D.

- Soil Vapors in Ambient Air: There is only one constituent retained as a COPC that U.S. EPA considers to be volatile (methyl cyclohexane). The Jury model, as used to derive the U.S. EPA RSLs (U.S. EPA, 2019b), is used to estimate ambient air concentrations that may exist above soil that contains VOCs. A site-specific Q/C parameter value that is based on a nine-acre site size, depth of soil contamination of 10 ft bgs, and climatological data for Chicago, IL are used in the model. The site size of nine acres is based on a conservative estimation that 10% of the property is unpaved.
- Soil Dust in Ambient Air: The Jury model, as used to derive the U.S. EPA RSLs (U.S. EPA, 2019b), is used to estimate a particulate emission factor (PEF) that can then be used to derive dust concentrations in ambient air. A site-specific Q/C parameter value that is based on a nine-

- acre site size and climatological data for Chicago, IL are used in the model. The site size of nine acres is based on a conservative estimation that 10% of the property is unpaved.
- Soil Dust in Ambient Air During Construction Activities: To account for increased dust concentrations that may be present during soil excavation activities due to wind erosion, excavating and dumping activities, grading, and dozing, the PEF is calculated using dispersion models presented in U.S. EPA RSL Calculator (U.S. EPA, 2019b) that account for the cumulative dust loading in air from each of these activities. This PEF is used for the construction worker scenario and is based on the assumption that a portion of the undeveloped area of the Site (two acres) gets re-developed in a manner that generates dust through mechanical excavation of soil to ten feet bgs, bulldozing, and grading. Although construction workers could also be exposed to fugitive dust from wind erosion of un-vegetated soil, the level of dust associated with that source is orders of magnitude lower than that associated with excavation activities and was therefore not included in the PEF.

4.4 CALCULATION OF INTAKE

The intake (i.e., ingestion, dermal absorption, or inhalation) of COPC by a human was quantified according to standard U.S. EPA calculation algorithms (U.S. EPA, 1989; 2004; 2009). Intakes are quantified to estimate the potential for non-cancer and carcinogenic health effects.

Chemical-specific input parameters used to calculate intake include the oral absorption factor and the dermal absorption factor. The oral absorption factor is 1 for all COPCs except arsenic, for which a value of 0.6 is used (U.S. EPA, 2019b). Dermal absorption factors are provided in U.S. EPA guidance (U.S. EPA, 2004) and include a value of 0.03 for arsenic and 0.1 for other SVOCs (which was applied to carbazole and dimethyl phthalate). U.S. EPA does not provide dermal absorption factors for VOCs or sulfide, iron, manganese, and thallium.

Intakes and associated non-cancer and cancer risk estimates were calculated using the U.S. EPA on-line RSL calculator (USPEA, 2019), using the 'risk output' mode. The 'risk output' mode uses EPCs with the receptor scenario exposure parameters to derive quantitative intakes. The intake values are then used with toxicity values (Section 5) to derive cancer risk and non-cancer hazard index values. Documentation of the RSL calculator input and output values is provided in Appendix D.

5. Toxicity Assessment

The objective of the toxicity assessment is to quantify the relationship between the intake, or dose, of COPCs and the likelihood that adverse health effects may result from exposure to the COPCs. There are two major types of adverse health effects evaluated in the HHRA: non-carcinogenic, and carcinogenic. Non-carcinogenic health effects refer to toxicological effects other than cancer which may result from exposure to a substance, such as toxicity to the liver, skin, or central nervous system. Carcinogenic health effects refer to the development of cancer which may result from exposure to a substance. Following U.S. EPA guidance (U.S. EPA, 1989), these two effects (non-carcinogenic and carcinogenic) are evaluated separately.

- Chronic Non-Carcinogenic Health Effects: U.S. EPA has established chronic non-carcinogenic health criteria termed reference doses (RfDs) for oral and dermal exposure routes, and reference concentrations (RfCs) for the inhalation exposure route. The RfD and RfC are each a daily intake level for the human population, including sensitive subpopulations, that are not expected to cause adverse health effects over a lifetime of exposure (U.S. EPA, 1989). It should be noted that RfDs and RfCs are generally very conservative (i.e., health protective) due to the use of large uncertainty factors.
- Carcinogenic Health Effects: U.S. EPA has established cancer toxicity values termed cancer slope factors (CSFs) for oral and dermal exposure routes, and unit risks (URs) for the inhalation exposure route. U.S. EPA uses both an alpha-numeric system and a weight-of-evidence-based descriptive narrative to describe the carcinogenic potential of an agent. Among the COPCs in soil at the Site, only arsenic is considered to be potentially carcinogenic to humans. Arsenic is classified by U.S. EPA as a Class A, human carcinogen.
- Toxicity Values for Dermal Exposure: Route-specific toxicity values are not available for the dermal pathway and are therefore extrapolated from the oral toxicity values using gastrointestinal absorption factors.
- Sources of Dose-Response Values: The sources used to identify dose-response values for this
 HHRA are consistent with U.S. EPA guidance (U.S. EPA, 2003). Toxicity values and their sources
 are provided in Appendix D.

6. Risk Characterization

The risk characterization provides a quantitative and qualitative discussion of the potential health hazards posed by the COPCs in environmental media for the receptor scenarios evaluated at the Site. The characterization of risks and hazards to future industrial workers and construction workers represent baseline risks under future conditions, with no remedial activities being performed.

6.1 RISK CHARACTERIZATION METHODOLOGY

Cancer risks associated with exposure to each COPC are calculated by multiplying the exposure route pathway-specific intake (e.g., oral exposure to soil) or exposure concentration (e.g., inhalation of dust) by its exposure route-specific CSF (e.g., oral CSF) or UR.

Intake $(mg/kg/day \text{ or } ug/m^3) \times CSF (mg/kg/day)^{-1} \text{ or } UR (ug/m^3)^{-1} = ELCR$

The calculated value is an ELCR and represents an upper bound of the probability of an individual developing cancer over a lifetime as the result of exposure to a COPC. This process is repeated for all exposure pathways for each receptor at each exposure point.

Non-cancer risks associated with exposure to each COPC are calculated by dividing the exposure route pathway-specific intake (e.g., oral exposure to soil) or exposure concentration (e.g., inhalation of dust) by its exposure route-specific RfD or RfC.

Intake $(mg/kg/day \text{ or } ug/m^3) / RfD (mg/kg/day) \text{ or } RfC (ug/m^3) = HQ$

The calculated value is a hazard quotient (HQ). Chemical-specific HQs are then summed among all exposure pathways for each receptor at each exposure point to produce a hazard index (HI). An HI less than 1 indicates that non-carcinogenic toxic effects are unlikely to occur as a result of COPC exposure. HIs greater than 1 may be indicative of a possible non-carcinogenic toxic effect. As the HI increases, so does the likelihood that adverse effects might be associated with exposure.

Risk calculations are presented in Appendix D.

An HI that is calculated by summing the HQs for all COPCs, which is termed a Screening Hazard Index, generally provides an overestimation of potential risk. This is because the critical effects upon which the RfD and RfC values are derived are not necessarily the same for all COPCs. For example, the critical effects for manganese are based on adverse effects to the central nervous system while the critical effect for arsenic is on adverse effects to the skin. Thus, summing arsenic and manganese HQs does not provide an accurate estimate of total HI for one effect or the other. Rather, it provides an overestimate of risk.

Consequently, a total HI that is above 1 and is based on exposures to multiple COPCs does not necessarily indicate that the potential for adverse health effects is unacceptable if the risks for the COPCs are not additive. Therefore, when HI values exceed 1, it is appropriate to conduct an additional evaluation to review the hazard quotient for each COPC individually, taking into consideration the effect of individual COPCs on target organs. Separate HI values for specific target organ effects may then be calculated and evaluated against the EPA goal of an HI of 1.

Results of the risk characterization for each receptor are discussed below.

6.2 RISK CHARACTERIZATION RESULTS

Total receptor ELCR and HI were compared to acceptable risk levels established in the National Contingency Plan (NCP; U.S. EPA, 1990). According to the NCP and U.S. EPA (1991) guidance "Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions," U.S. EPA uses a hazard index of unity (i.e., 1) and a 10⁻⁴ (one in ten-thousand) to 10⁻⁶ (one in a million) risk range as a "target range" within which the Agency strives to manage risks.

6.2.1 Future Industrial Worker

Industrial worker exposure to surface soil are associated with the following potential levels of risk:

Industrial Worker	Exposure Route	ELCR	Screening HI	
Surface soil (0 to 2 ft bgs)	Incidental ingestion	1.4E-06	1.1	
	Dermal absorption	2.9E-07	0.0018	
	Dust inhalation	3.2E-09	0.099	
	Vapor inhalation	NC	NC	
		1.6E-06	1.2	

The cancer risks are below the NCP risk range of 10^{-6} to 10^{-4} and the Screening HI is 1.2. HI values are further evaluated by target organ effect in Table 4. As indicated in Table 4, all of the target organ HI values are below 1.

6.2.2 Future Re-development Construction Worker

Construction worker exposure to surface and subsurface soil are associated with the following potential levels of risk:

Re-development Construction Worker	Exposure Route	ELCR	Screening HI
Total soil (0 to 10 ft bgs)	Incidental ingestion	1.4E-07	1.5
	Dermal absorption	2.2E-08	0.0036
	Dust inhalation	7.5E-10	0.53
	Vapor inhalation	NC	NC
		1.6E-07	2.1

The cancer risks are below the NCP risk range of 10^{-6} to 10^{-4} and the Screening HI is 2.1. HI values are further evaluated by target organ effect in Table 4. As shown in Table 4, all target organ HI values are below 1 except for CNS effects, which is an HI of 1.5.

The HI for CNS effects is contributed by manganese, with an incidental soil ingestion HQ of 1.0 and a particulate inhalation HQ of 0.5. The HQ associated with the inhalation exposure pathway likely overstates the potential hazard to construction workers associated with exposure to manganese in Site soil because:

The RfC for manganese is based epidemiological studies that examined workers exposed to
manganese oxide fumes in a battery manufacturing plant. Potential exposure to manganese in
Site soil is associated with manganese adsorbed to soil particulates. Manganese entrained in
soil particulates would have a lower absorption through lung tissue than manganese oxide
fumes.

- The RfC for manganese includes a 1000-fold uncertainty factor, indicating that there is an abundance of protection built into the toxicity value.
- The particulate emissions to which a construction worker is modeled to be exposed to are based on a hypothetical model which estimates particulate generation through various mechanical soil excavation activities. Furthermore, it is unlikely that a construction worker would be exposed to the concentration of soil particulates assumed in the risk assessment continuously for the duration of the construction project.

Overall, these conditions suggest that an HI of 1.5 for construction worker exposure to manganese in Site soil is unlikely to be indicative of a significant health risk.

Construction worker exposure to groundwater was evaluated by deriving risk-based concentrations (Appendix D) and comparing them to groundwater EPCs. Arsenic and benzene were the only two constituents detected in recent groundwater sampling at concentrations above the Tier 1A screening levels. However, risk-based screening levels were also developed for tetrachloroethene, trichloroethene, and iron to provide perspective on groundwater analytical results. Tetrachloroethene and trichloroethene were previously detected at location IFW-02-00023 (September 1998) at concentrations above Tier 1A screening levels, but were not detected in recent sampling of the nearby monitoring well IMW-02-00004S/D. A Tier 1A screening level was not previously identified for iron. As shown in Table 5, maximum detected groundwater concentrations were below risk-based screening levels for the construction worker scenario. Therefore, on-site groundwater does not pose significant risks to a future construction worker.

6.3 RISK ASSESSMENT QUALITATIVE UNCERTAINTY ANALYSIS

This section identifies and discusses uncertainties in the risk assessment. These uncertainties are identified to place the results in context or perspective. The following types of uncertainties should be considered in any human-health risk evaluation:

- Uncertainties in the nature and extent of the release of a COPC;
- Uncertainties associated with estimating the frequency, duration, and magnitude of possible exposure;
- Uncertainties associated with assigning exposure parameters to a heterogeneous population that includes both men and women and young and old (e.g., body weight and ingestion rates);
- Uncertainties in estimating CSFs and URs and/or non-carcinogenic measures of toxicity (e.g., RfDs or RfCs); and
- Uncertainties about possible synergistic or antagonistic chemical interactions of a chemical mixture.

These generic uncertainties, which are applicable to all risk assessments, are not evaluated in this uncertainty analysis. Rather, this uncertainty analysis evaluates site-specific uncertainties that could have a bearing on the interpretation of the risk assessment results. The following presents a consideration of the HHRA-specific uncertainties.

6.3.1 Hazard Identification

Analytical Detection Limits. Analytical detection limits for arsenic and thallium are greater than industrial RSLs based on 1E-06/HI=0.1 target risks. However, both of those metals were retained as COPCs, and analytical detection limits have been included in the derivation of the EPCs. Therefore,

elevated detection limits for arsenic and thallium do not represent an uncertainty that would have a bearing on the results of the risk assessment.

6.3.2 Exposure Assessment

Particulate Emissions during Construction Activities. The EPC for inhalation of dust by re-development construction workers was derived by combining the soil EPCs with a particulate emission factor. The particulate emission factor was derived using models that predict dust emissions that result from various mechanical soil excavation and grading activities. There are a number of uncertainties associated with this modeling that can affect the particulate emission estimates, including the silt fraction and moisture content of soil, number of times that the Site area is dozed and graded, number of times soil is dumped, and Site area over which these activities occur. These parameters affect the emission modeling results as follows:

- Doubling soil moisture content reduces emissions estimates 14%;
- Doubling acreage increases emissions estimates 16%; and
- Doubling the frequency of mechanical activities increases emissions estimates 28%.

While the silt and moisture content of the soil could be measured, the nature of any future site redevelopment is not known. Therefore, the area over which mechanical soil disturbance may occur, and frequency of mechanical disturbance activities, can only be estimated.

More significantly, the model expresses emissions estimates as an average value over the total time period that construction activities occur. This means that the dust emission is assumed to occur continuously over the duration of the construction project. In reality, activities that involve mechanical agitation of soil are episodic in nature. Consequently, potential exposures to dust emissions associated with mechanical agitation of soil occur episodically, and are therefore representative of acute exposures, as opposed to the subchronic exposures that are modelled for the construction worker exposure scenario.

6.3.3 Toxicity Assessment

COPCs Lacking Dose-Response Values. Dose-response values are published in sources approved by U.S. EPA are not published for methyl cyclohexane, carbazole, and sulfide, and only a subchronic RfD is published for dimethyl phthalate. Lack of dose-response values can result in underestimation of risks. However, the potential risks associated with the constituents can be gauged by review of toxicity values and RSLs for chemicals that are structurally similar.

- Methyl cyclohexane: An RSL is available for cyclohexane. The value (310 mg/kg at an HI of 0.1) is orders of magnitude higher than the concentration detected in Site soil (0.12 mg/kg), suggesting that methyl cyclohexane is unlikely to pose a health risk of concern.
- Carbazole: Historically, the Health Effects Assessment Summary Tables (HEAST) provided an oral CSF for carbazole of 2E-02 per mg/kg/day. If this CSF was applied, the industrial soil RSL would be approximately 115 mg/kg. The maximum detected concentration of carbazole in Site soil is 0.12 mg/kg. Therefore, carbazole would not pose a health risk of concern.
- Dimethyl phthalate: Using the subchronic RfD that has been published as a provisional peer reviewed toxicity value (PPRTV), the dimethyl phthalate HQ for the construction worker is 3E-06. Even if large uncertainty factors were applied to the subchronic RfD to derive a chronic RfD, the HQ for the industrial worker would be orders of magnitude below 1. Therefore, lack of a chronic RfD for dimethyl phthalate does not affect the conclusions of the risk assessment.

Sulfide: An RSL is available for sulfur trioxide. The value (600,000 mg/kg at an HI of 0.1) is
orders of magnitude higher than the concentration detected in Site soil (1500 mg/kg),
suggesting that sulfide is unlikely to pose a health risk of concern.

In addition, RfC values are available for arsenic and manganese, but the values published in U.S. EPA approved sources are chronic values. The re-development construction worker scenario, for which potential inhalation exposures are more significant than for the industrial worker scenario, is a subchronic exposure scenario. Application of chronic toxicity values to evaluate subchronic exposure represents a conservative approach that is likely to overestimate risk.

6.3.4 Risk Characterization

Overall, the risks to a re-development construction worker associated with potential inhalation exposures to manganese in particulates is over-stated in this HHRA because:

- Dust emissions associated with mechanical agitation of soil would occur episodically over short
 periods of time, and therefore represent a series of acute exposures. However, the exposure is
 modelled as a subchronic exposure (i.e., occurring continuously, 8 hours per day, 5 days per
 week, for 50 weeks).
- The inhalation toxicity value for manganese is a chronic value that is based on health effects
 observed in workers who were exposed to manganese oxide fumes, not to manganese
 entrained in soil particulates. The exposure regime that forms the basis of the toxicity study is
 not consistent with the exposure regime evaluated in this risk assessment, and a chronic toxicity
 value is being used to evaluate inhalation exposures that are likely to be acute in nature.
- The inhalation toxicity value was derived by incorporating a 1000-fold uncertainty factor, indicating that there is an abundance of conservatism in the toxicity value.

Consequently, the inhalation HQ of 0.5 estimated for the re-development construction worker likely over-states the potential risk associated with dust inhalation exposures to soil at the Site.

7. Conclusions

This risk assessment was performed in a manner consistent guidance provided in U.S. EPA's *Risk Assessment Guidance for Superfund* (RAGS) document series (U.S. EPA, 1989; 2004; 2009). The risk assessment incorporates the soil and groundwater verification sampling data collected at the IHLC during the investigation conducted in 2019. This risk assessment has been performed to determine if, under future industrial land use conditions, potentially complete exposure pathways are associated with health risks that meet EPA risk management criteria.

The risk assessment provided documentation that the only potentially complete exposure pathways to Site-related constituents are associated with:

- Future industrial worker, potentially exposed to surface soil (zero to two feet bgs) via incidental ingestion, dermal absorption, and dust and vapor inhalation.
- Future re-development construction worker, potentially exposed to total soil (zero to ten feet bgs) via incidental ingestion, dermal absorption, and dust and vapor inhalation, and to groundwater via incidental ingestion and dermal absorption.

Incomplete or insignificant exposure pathways at the Site, which were not further evaluated in this risk assessment, include:

- Potable or non-potable uses of groundwater. Extraction and use of groundwater for any purposes is prohibited, in accordance with the Institutional Controls.
- Direct contact with constituents in groundwater that may migrate to surface water. Constituents in groundwater are below risk-based screening levels protective for recreational and angling exposures to surface water, as well as aquatic life exposures to surface water.
- Vapor intrusion to indoor air from soil or groundwater. Considering the significant size, air
 infiltration, and natural ventilation of the current property building, any potential effects of
 vapor intrusion of vapor-forming chemicals will be mitigated via dilution.

Furthermore, the risk assessment documented that there are no potentially complete exposure pathways to off-Site receptors, including industrial workers and construction/utility workers at neighboring properties, and aquatic life in adjacent surface water bodies.

Based on the estimated hazards and risks, future use of the Site for industrial development is associated with health risks that meet the U.S. EPA acceptable risk goals as follows:

- Industrial Worker: incidental ingestion, dermal absorption, and dust and vapor inhalation exposure to surface soil (zero to two feet bgs). Incremental lifetime cancer risks are within the NCP range of 10⁻⁶ to 10⁻⁴, and hazard index values are below 1.
- Re-development Construction Worker: incidental ingestion, dermal absorption, and dust and vapor inhalation exposure to soil (zero to ten feet bgs). Incremental lifetime cancer risks are below 10⁻⁶, and the hazard index value is 1.5.
- Re-development Construction Worker: incidental ingestion and dermal absorption exposure to groundwater: Maximum detected groundwater concentrations are below risk-based screening levels.

The hazard index of 1.5 for the re-development construction worker is associated with manganese, for which an HQ of 1 for incidental ingestion and an HQ of 0.5 for dust inhalation were calculated. The HQ associated with dust inhalation represents a very conservative estimate of inhalation hazard because the chronic inhalation toxicity value for manganese is a chronic value, but it is being used to evaluate dust inhalation exposures to construction workers that are episodic, and therefore acute in nature.

8. References

- 1. AECOM, Phase II RCRA Facility Investigation Interior Source Area Report, January 2012.
- 2. AECOM, Phase II RCRA Facility Investigation Report, Facility Perimeter Areas, September 2009.
- 3. ArcelorMittal USA LLC, Response to Comments; Data Sufficiency Evaluation, 11 January 2019.
- 4. Earth Tech, Documentation of Environmental Indicator Determination, 2005.
- 5. Haley & Aldrich, Inc. (2018). RCRA Facility Investigation Data Sufficiency Evaluation, May 2018.
- 6. Haley & Aldrich, Inc. (2019). RCRA Facility Investigation Data Summary Report, May 2019
- 7. United States District Court for the Northern District of Indiana, Consent Decree, 1993.
- 8. United States Environmental Protection Agency [U.S. EPA] (1989). "Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final", Office of Emergency and Remedial Response, Washington, D.C; December 1989. EPA/540/1-89/002.
- 9. United States Environmental Protection Agency [U.S. EPA] (1990). "Code of Federal Regulations, Title 40, Part 300, National Oil and Hazardous Substances Pollution Contingency Plan"; Federal Register; March 8.
- 10. United States Environmental Protection Agency [U.S. EPA] (1991). "Role of the Baseline Risk Assessment in the Superfund Remedy Selection Process"; Office of Emergency and Remedial Response; OSWER 9355.0-30.
- 11. United States Environmental Protection Agency [U.S. EPA] (2002a). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response. OSWER 9355.4-24. December 2002.
- 12. United States Environmental Protection Agency [U.S. EPA] (2002b). *Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites*. Office of Solid Waste and Emergency Response/Office of Solid Waste and Remedial Response; OSWER 9285.6-10; December 2002.
- 13. United States Environmental Protection Agency [U.S. EPA] (2003). "Human Health Toxicity Values in Superfund Risk Assessments" (OSWER No. 9285.7-53, December 2003).
- 14. United States Environmental Protection Agency [U.S. EPA] (2004). Risk Assessment Guidance for Superfund, Volume 1. Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, OSWER 9285.7-02EP, July 2004, final. Washington, D.C.

- 15. United States Environmental Protection Agency [U.S. EPA] (2009). Risk Assessment Guidance for Superfund, Volume 1. Human Health Evaluation Manual, Part F. Supplemental Guidance for Inhalation Risk Assessment, EPA-540-R-070-002, OSWER 9285.7-82. January 2009, final. Washington, D.C.
- 16. United States Environmental Protection Agency [U.S. EPA] (2016a), Resource Conservation and Recovery Act Facilities Investigation Remedy Selection Track A Toolbox for Corrective Action, May 2016.
- 17. United States Environmental Protection Agency [U.S. EPA].(2016b). Software for Calculating Upper Confidence Limits. ProUCL Version 5.1.002. https://www.epa.gov/land-research/proucl-version-5100-documentation-downloads
- 18. United States Environmental Protection Agency [U.S. EPA] (2019a). Comments on Verification Sampling Indiana Harbor Long Carbon, May 2019.
- 19. United States Environmental Protection Agency [U.S. EPA] (2019b). Mid-Atlantic Risk Assessment Regional Screening Levels (RSLs). U.S. EPA Environmental Protection Agency. May 2019.

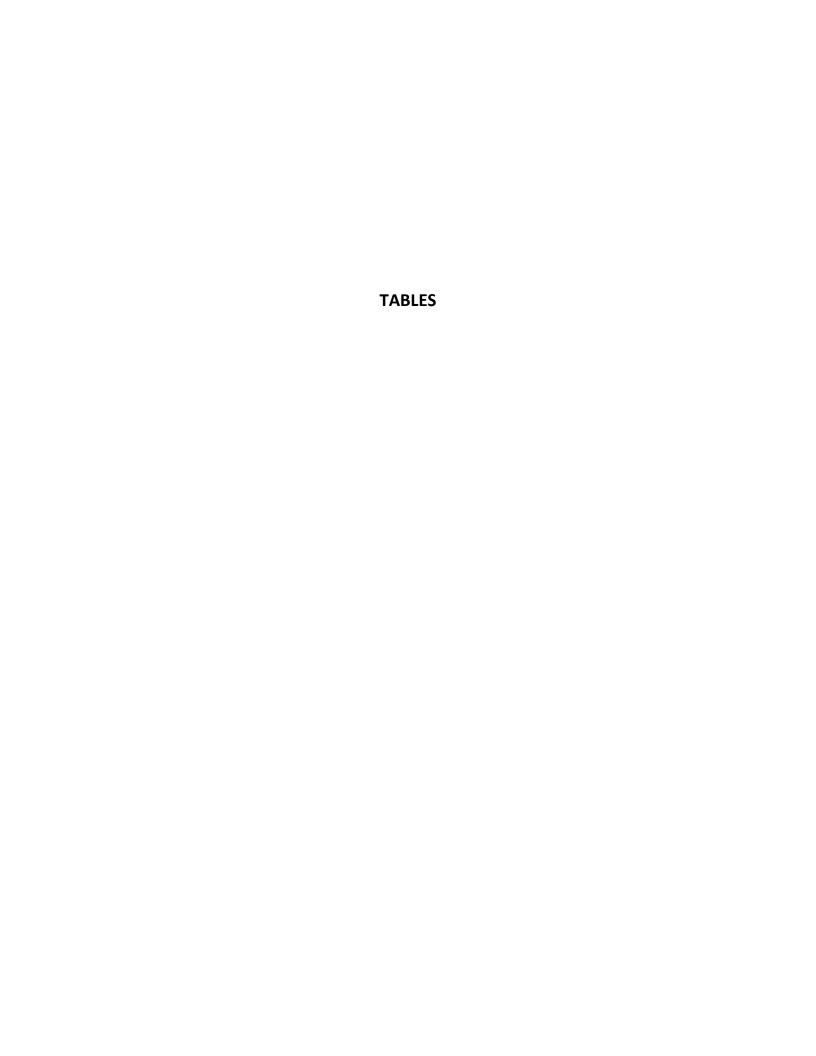


TABLE 1
SUMMARY OF EXPOSURE PATHWAYS
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA
FILE NO. 129719

			Pathway	
			Potentially	
Exposure Medium [a]	Receptor	Exposure Pathway	Complete?	Rationale
On-Site Surface Soil	Industrial Worker	Incidental ingestion, dermal absorption,	Yes	Under future use conditions as commercial/industrial property, workers may contact constituents in surface soil during
		dust and vapor inhalation		routine work.
	Re-development Construction Worker	Incidental ingestion, dermal absorption,	Yes	Under future use conditions, re-development construction workers may contact surface soil during subsurface excavation
		dust and vapor inhalation		activities.
	Terrestrial birds and mammals	Incidental ingestion, food chain uptake	No	The facility is industrial and does not provide any terrestrial habitat.
On-Site Subsurface Soil	Industrial Worker	Incidental ingestion, dermal absorption,	No	Under future use conditions, commercial/industrial workers would not be engaged in subsurface excavation activities, and
		dust and vapor inhalation		will therefore not contact subsurface soil.
	Re-development Construction Worker	Incidental ingestion, dermal absorption,	Yes	Under future use conditions, re-development construction workers may contact subsurface soil during subsurface
		dust and vapor inhalation		excavation activities.
	Terrestrial birds and mammals	Incidental ingestion, food chain uptake	No	The facility is industrial and does not provide any terrestrial habitat.
OnSite Groundwater [b]	Industrial Worker	Ingestion, dermal absorption	No	Under future conditions, use of groundwater for potable and non-potable purposes is prohibited by institutional controls
	Re-development Construction Worker	Ingestion, Dermal absorption	Yes	Recent groundwater sampling verified previous conditions; however, arsenic and benzene were detected in groundwater
				at concentrations above Tier 1A human health screening values.
Surface Water (via migraiton of	Recreational Users	Incidental ingestion and dermal contact	No	There are no on-site surface waterss at the IHLC property. Recent groundwater sampling verified previous conditions;
groundwater to surface water)		with groundwater that migrates to surface		constituents were not detected in groundwater at concentrations above Tier 1A and/or 1B human health and ecological
[b]		water		screening values.
	Aquatic Life	Direct exposure to groundwater that	No	
		migrates to surface water		
	,	_		
Sediment	Recreational Users	Incidental ingestion and dermal contact	No	There are no on-site surface waters and thus, no associated on-site sediments at the IHLC property. The U.S. EPA and
		with groundwater that migrates to surface		ArcelorMittal have agreed that relative to RCRA Corrective Action at the IHE facility, assessment of the IHSC and Indiana
		water		Harbor sediments is not relevant because sheet pile revetments are in place and are maintained by ArcelorMittal to
	Aquatic Life	Direct exposure to groundwater that	No	prevent future impacts to the IHSC from the IHE facility.
		migrates to surface water		
	I	I	I	
Indoor Air	Industrial Worker	Inhalation	No	Considering the significant size, air infiltration, and natural ventilation of the current property building, any potential
				effects of vapor intrusion of vapor-forming chemicals will be mitigated via dilution. Therefore, the vapor intrusion
				pathway is considered to be insignificant.
		_		
Outdoor Air	Industrial Worker	Inhalation	No	VOCs have not been detected in groundwater or soil at concentrations that would cause them to be a source of emissions
				to outdoor air.

Notes

- [a] Exposure pathways are not complete for off-site soil or groundwater as discussed in Section 3 of the report; therefore those media are not presented in this table.
- [b] Tier 1A, Tier 1B, and ecological screening values were presented in the Data Summary Report (Haley & Aldrich, May 2019) and are provided in Appendix A.
 - Tier 1A screening values for the construction worker were based on IDEM Industrial Use Closure Levels for groundwater, which are protective for use groundwater as a drinking water at insubstantial facilities.
 - Tier 1A screening levels for recreational users were based on IDEM Ambient Surface Water Quality Criteria for non-drinking water use or the National Recommended Water Quality Criteria,
 - both of which are protective for swimming and ingestion of fish.
- Tier 1B screening criteria were the Tier 1A screening criteria multiplied by a dilution-attenuation factor of 10 to account for dispersion of constituents when groundwater migrates to surface water.

TABLE 2
SUMMARY OF SURFACE SOIL DATA (0-2 FT BGS), SELECTION OF COPCs AND EPCS
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA
FILE NO. 129719

Parameter	Frequency of Detection	Range of Reporting Limits for Non-Detects	Range of Detected Concentrations	May 2019 Industrial Soil RSL (HI = 0.1, ELCR = 1e-06)	Selected a	s a COPC?	95% UCL	95% UCL Statistic	EPC
Volatile Organic Compounds (ug/kg)				,					
1,1,1-Trichloroethane	1 / 11	250 - 360	65 - 65	3600000 ns	No	BSL			na
Benzene	2 / 11	250 - 360	8.4 - 15	5100 c**	No	BSL			na
Ethylbenzene	2 / 11	250 - 360	18 - 19	25000 c*	No	BSL			na
Methyl acetate	3 / 11	1300 - 1800	530 - 2100	120000000 nms	No	BSL			na
Methyl cyclohexane	1 / 11	500 - 720	80 - 80		Yes	NSL		NC	80
Naphthalene	2 / 11	250 - 360	170 - 190	17000 c**	No	BSL			na
Tetrachloroethene	5 / 11	250 - 360	29 - 190	39000 n	No	BSL			na
Toluene	1 / 11	250 - 360	83 - 83	4700000 ns	No	BSL			na
Xylene (total)	2 / 11	500 - 720	26 - 85	250000 n	No	BSL			na
Semi-Volatile Organic Compounds (ug/kg)									
2-Methylnaphthalene	11 / 11		8.5 - 150	300000 n	No	BSL			na
Acenaphthene	10 / 11	16 - 16	13 - 95	4500000 n	No	BSL			na
Acenaphthylene	9 / 11	80 - 81	4.5 - 220	2300000 n	No	BSL			na
Acetophenone	2 / 11	110 - 540	22 - 54	12000000 ns	No	BSL			na
Anthracene	11 / 11		14 - 360	23000000 n	No	BSL			na
Benzaldehyde	2 / 11	110 - 540	63 - 69	820000 c*	No	BSL			na
Benzo(a)anthracene	11 / 11		62 - 1100	21000 c	No	BSL			na
Benzo(a)pyrene	11 / 11		58 - 1400	2100 c*	No	BSL			na
Benzo(b)fluoranthene	11 / 11		120 - 1900	21000 c	No	BSL			na
Benzo(g,h,i)perylene	11 / 11		67 - 1400	2300000 n	No	BSL			na
Benzo(k)fluoranthene	10 / 11	81 - 81	29 - 680	210000 c	No	BSL			na
Biphenyl	1 / 11	54 - 270	27 - 27	20000 n	No	BSL			na
bis(2-Ethylhexyl)phthalate	6 / 11	150 - 380	56 - 400	160000 c*	No	BSL			na
Carbazole	6 / 11	54 - 270	35 - 120		Yes	NSL	103	95% KM (t) UCL	103
Chrysene	11 / 11		88 - 1400	2100000 c	No	BSL			na
Dibenz(a,h)anthracene	8 / 11	16 - 81	33 - 370	2100 c	No	BSL			na
Dibenzofuran	9 / 11	54 - 270	36 - 120	100000 n	No	BSL			na
Dimethyl phthalate	1 / 11	75 - 380	70 - 70		Yes	NSL		NC	70
Fluoranthene	11 / 11		130 - 4300	3000000 n	No	BSL			na
Fluorene	9 / 11	16 - 42	15 - 76	3000000 n	No	BSL			na
Indeno(1,2,3-cd)pyrene	11 / 11		44 - 1200	21000 c	No	BSL			na
Naphthalene	11 / 11		13 - 200	17000 c**	No	BSL			na
Phenanthrene	11 / 11		71 - 1000	2300000 n	No	BSL			na
Phenol	1 / 11	54 - 270	23 - 23	25000000 n	No	BSL			na
Pyrene	11 / 11		150 - 3400	2300000 n	No	BSL			na
Other (mg/kg)									
Sulfide	11 / 11		41 - 1500		Yes	NSL	980	95% Adjusted Gamma UCL	980

TABLE 2 SUMMARY OF SURFACE SOIL DATA (0-2 FT BGS), SELECTION OF COPCs AND EPCs ARCELORMITTAL - INDIANA HARBOR LONG CARBON EAST CHICAGO, INDIANA FILE NO. 129719

Parameter	Frequency of Detection	Range of Reporting Limits for Non-Detects	Range of Detected Concentrations	May 2019 Industrial Soil RSL (HI = 0.1, ELCR = 1e-06)	Selected a	is a COPC?	95% UCL	95% UCL Statistic	EPC
Inorganic Compounds (mg/kg)									
Antimony	5 / 11	0.9 - 17	0.39 - 2.6	47 n	No	BSL			na
Arsenic	5 / 11	4.5 - 22	0.7 - 5.6	3 c*R	Yes	ASL	4.94	95% KM (t) UCL	4.94
Barium	11 / 11		32 - 300	22000 n	No	BSL			na
Beryllium	11 / 11		0.28 - 6.6	230 n	No	BSL			na
Cadmium	10 / 11	3.3 - 3.3	0.072 - 1.5	98 n	No	BSL			na
Chromium	11 / 11		22 - 1100	180000 n	No	BSL			na
Cobalt	11 / 11		0.67 - 6.1	35 n	No	EN			na
Copper	11 / 11		6.5 - 140	4700 n	No	BSL			na
Cyanide	11 / 11		0.43 - 2.3	15 n	No	BSL			na
Iron	11 / 11		6100 - 210000	82000 n	Yes	ASL	94823	95% Student's-t UCL	94823
Lead	11 / 11		6 - 170	800 G	No	BSL			na
Magnesium	11 / 11		16000 - 37000		No	EN			na
Manganese	11 / 11		540 - 16000	2600 n	Yes	ASL	11557	95% Adjusted Gamma UCL	11557
Mercury	8 / 11	0.11 - 0.12	0.019 - 0.17	4.6 ns	No	BSL			na
Nickel	11 / 11		3.6 - 72	2200 n	No	BSL			na
Selenium	3 / 11	1.6 - 32	1.4 - 4.6	580 n	No	BSL			na
Silver	10 / 11	0.53 - 0.53	0.46 - 2.9	580 n	No	BSL			na
Sodium	11 / 11		150 - 1300		No	EN			na
Thallium	1 / 11	1 - 22	6.7 - 6.7	1.2 n	Yes	ASL		NC	6.7
Tin	10 / 11	9.2 - 9.2	4.4 - 15	70000 n	No	BSL			na
Vanadium	11 / 11		17 - 540	580 n	No	BSL			na
Zinc	11 / 11		23 - 340	35000 n	No	BSL			na

Abbreviations

ASL = above screening level

BSL = below screening level

COPC = compound of potential concern

ELCR = Excess Lifetime Cancer Risk

EN = essential nutrient

EPC = exposure point concentration

HI = Hazard index

mg/kg = milligram per kilogram

na = not applicable

NA = not available

NSL = no screening level available

RSL = Regional Screening Level

UCL = Upper Confidence Limit

ug/kg = microgram per kilogram

RSLs: Regional Screening Levels are the Industrial Soil values, based on a cancer risk of 1E-06 and a hazard index of 0.1, and were obtained from United States Environmental Protection Agency Regions 3, 6, and 9, Regional Screening Table, http://www.epa.gov/reg3hwmd/risk/human/rb-concentration table/index.htm, updated May 2019.

c = cancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; n = noncancer

s = Concentration may exceed chemical saturation limit (See RSL User Guide)

L = see RSL user guide on lead; R = RBA applied (See User Guide for Arsenic notice)

Pyrene RSL used as a surrogate for Acenaphthylene, Benzo(ghi)perylene, and Phenanthrene.

Trivalent chromium RSL used as a surrogate for Chromium, Total.

The RSL value for lead is not reduced by a factor of 10 because lead risk is not additive with other COPCs.

COPCs: A compound was selected as a COPC if the maximum detected level exceeded the Industrial RSL or if no screening level was available. Analytical data are provided in Appendix B.

EPCs: EPCs are the lower value of either the calculated 95% Upper Confidence Limit (95%UCL), or the maximum detected concentrations of COPCs. 95%UCLs are calculated using 2016 EPA ProUCL software, version 5.1.002. See Appendix C.

TABLE 3
SUMMARY OF TOTAL SOIL DATA (0-10 FT BGS), SELECTION OF COPCs AND EPCS
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA
FILE NO. 129719

Parameter	Frequency of Detection	Range of Reporting Limits for Non-Detects	Range of Detected Concentrations	May 2019 Industrial Soil RSL (HI = 0.1, ELCR = 1e-06)	Selected a	as a COPC?	95% UCL	95% UCL Statistic	EPC
Volatile Organic Compounds (ug/kg)				`					
1,1,1-Trichloroethane	1 / 22	250 - 360	65 - 65	3600000 ns	No	BSL			na
Benzene	2 / 22	250 - 360	8.4 - 15	5100 c**	No	BSL			na
Ethylbenzene	3 / 22	250 - 360	18 - 26	25000 c*	No	BSL			na
Methyl acetate	3 / 22	1200 - 1800	530 - 2100	120000000 nms	No	BSL			na
Methyl cyclohexane	2 / 22	500 - 720	80 - 120		Yes	NSL	134	95% KM (t) UCL	120
Naphthalene	2 / 22	250 - 360	170 - 190	17000 c**	No	BSL			na
Tetrachloroethene	5 / 22	250 - 360	29 - 190	39000 n	No	BSL			na
Toluene	2 / 22	250 - 360	83 - 110	4700000 ns	No	BSL			na
Xylene (total)	3 / 22	500 - 720	26 - 180	250000 n	No	BSL			na
Semi-Volatile Organic Compounds (ug/kg)									
2-Methylnaphthalene	18 / 22	17 - 18	8.5 - 150	300000 n	No	BSL			na
Acenaphthene	13 / 22	16 - 18	13 - 95	4500000 n	No	BSL			na
Acenaphthylene	10 / 22	16 - 81	4.5 - 220	2300000 n	No	BSL			na
Acetophenone	3 / 22	110 - 540	16 - 54	12000000 ns	No	BSL			na
Anthracene	19 / 22	17 - 18	4.6 - 360	23000000 n	No	BSL			na
Benzaldehyde	2 / 22	110 - 540	63 - 69	820000 c*	No	BSL			na
Benzo(a)anthracene	20 / 22	16 - 17	13 - 1100	21000 c	No	BSL			na
Benzo(a)pyrene	21 / 22	17 - 17	15 - 1400	2100 c*	No	BSL			na
Benzo(b)fluoranthene	21 / 22	17 - 17	15 - 1900	21000 c	No	BSL			na
Benzo(g,h,i)perylene	21 / 22	17 - 17	12 - 1400	2300000 n	No	BSL			na
Benzo(k)fluoranthene	17 / 22	16 - 81	9.9 - 680	210000 c	No	BSL			na
Biphenyl	1 / 22	53 - 270	27 - 27	20000 n	No	BSL			na
bis(2-Ethylhexyl)phthalate	7 / 22	75 - 380	56 - 400	160000 c*	No	BSL			na
Carbazole	10 / 22	53 - 270	25 - 120		Yes	NSL	67.2	95% KM (t) UCL	67.2
Chrysene	20 / 22	16 - 17	13 - 1400	2100000 c	No	BSL			na
Dibenz(a,h)anthracene	14 / 22	16 - 81	13 - 370	2100 c	No	BSL			na
Dibenzofuran	13 / 22	53 - 270	20 - 120	100000 n	No	BSL			na
Dimethyl phthalate	1 / 22	75 - 380	70 - 70		Yes	NSL		NC	70
Fluoranthene	22 / 22		6.9 - 4300	3000000 n	No	BSL			na
Fluorene	13 / 22	16 - 42	4.9 - 78	3000000 n	No	BSL			na
Indeno(1,2,3-cd)pyrene	19 / 22	16 - 17	13 - 1200	21000 c	No	BSL			na
Naphthalene	18 / 22	17 - 18	10 - 200	17000 c**	No	BSL			na
Phenanthrene	20 / 22	17 - 17	15 - 1000	2300000 n	No	BSL			na
Phenol	2 / 22	53 - 270	23 - 45	25000000 n	No	BSL			na
Pyrene	22 / 22		7.1 - 3400	2300000 n	No	BSL			na
Other (mg/kg)									
Sulfide	17 / 22	32 - 36	19 - 1500		Yes	NSL	622	95% KM (Chebyshev) UCL	622

TABLE 3 SUMMARY OF TOTAL SOIL DATA (0-10 FT BGS), SELECTION OF COPCs AND EPCs ARCELORMITTAL - INDIANA HARBOR LONG CARBON EAST CHICAGO, INDIANA FILE NO. 129719

Parameter	Frequency of Detection	Range of Reporting Limits for Non-Detects	Range of Detected Concentrations	May 2019 Industrial Soil RSL (HI = 0.1, ELCR = 1e-06)	Selected a	s a COPC?	95% UCL	95% UCL Statistic	EPC
Inorganic Compounds (mg/kg)									
Antimony	8 / 22	0.84 - 17	0.39 - 2.6	47 n	No	BSL			na
Arsenic	16 / 22	4.5 - 22	0.7 - 5.9	3 c*R	Yes	ASL	3.81	95% KM (t) UCL	3.81
Barium	22 / 22		2.6 - 300	22000 n	No	BSL			na
Beryllium	17 / 22	0.49 - 0.56	0.047 - 6.6	230 n	No	BSL			na
Cadmium	20 / 22	0.22 - 3.3	0.057 - 1.5	98 n	No	BSL			na
Chromium	22 / 22		4.1 - 1100	180000 n	No	BSL			na
Cobalt	22 / 22		0.67 - 6.1	35 n	No	BSL			na
Copper	22 / 22		1.3 - 140	4700 n	No	BSL			na
Cyanide	12 / 22	0.5 - 0.6	0.22 - 2.3	15 n	No	BSL			na
Iron	22 / 22		3500 - 210000	82000 n	Yes	ASL	82856	95% Chebyshev (Mean, Sd) UCL	82856
Lead	22 / 22		2.1 - 170	800 G	No	BSL			na
Magnesium	22 / 22		590 - 37000		No	EN			na
Manganese	22 / 22		120 - 16000	2600 n	Yes	ASL	7942	95% Chebyshev (Mean, Sd) UCL	7942
Mercury	9 / 22	0.11 - 0.13	0.019 - 0.17	4.6 ns	No	BSL			na
Nickel	22 / 22		2.3 - 72	2200 n	No	BSL			na
Selenium	7 / 22	1.3 - 32	0.5 - 4.6	580 n	No	BSL			na
Silver	20 / 22	0.44 - 0.53	0.13 - 2.9	580 n	No	BSL			na
Sodium	21 / 22	470 - 470	73 - 1300		No	EN			na
Thallium	2 / 22	0.84 - 22	4.8 - 6.7	1.2 n	Yes	ASL	2.36	95% KM (t) UCL	2.36
Tin	15 / 22	8.6 - 11	3 - 15	70000 n	No	BSL			na
Vanadium	22 / 22		7.8 - 540	580 n	No	BSL			na
Zinc	22 / 22		11 - 340	35000 n	No	BSL			na

Abbreviations

ASL = above screening level

BSL = below screening level

COPC = compound of potential concern

ELCR = Excess Lifetime Cancer Risk

EN = essential nutrient

EPC = exposure point concentration

HI = Hazard index

mg/kg = milligram per kilogram

na = not applicable

NA = not available

NSL = no screening level available

RSL = Regional Screening Level

UCL = Upper Confidence Limit

ug/kg = microgram per kilogram

RSLs: Regional Screening Levels are the Industrial Soil values, based on a cancer risk of 1E-06 and a hazard index of 0.1, and were obtained from United States Environmental Protection Agency Regions 3, 6, and 9, Regional Screening Table, http://www.epa.gov/reg3hwmd/risk/human/rb-concentration table/index.htm, updated May 2019.

c = cancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; n = noncancer

s = Concentration may exceed chemical saturation limit (See RSL User Guide)

L = see RSL user guide on lead; R = RBA applied (See User Guide for Arsenic notice)

Pyrene RSL used as a surrogate for Acenaphthylene, Benzo(ghi)perylene, and Phenanthrene.

Trivalent chromium RSL used as a surrogate for Chromium, Total.

The RSL value for lead is not reduced by a factor of 10 because lead risk is not additive with other COPCs.

COPCs: A compound was selected as a COPC if the maximum detected level exceeded the Industrial RSL or if no screening level was available. Analytical data are provided in Appendix B.

EPCs: EPCs are the lower value of either the calculated 95% Upper Confidence Limit (95%UCL), or the maximum detected concentrations of COPCs. 95%UCLs are calculated using 2016 EPA ProUCL software, version 5.1.002. See Appendix C.

TABLE 4
CALCULATION OF HAZARD INDEX VALUES BY TARGET ORGAN EFFECT
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA
FILE NO. 129719

				RfD/RfC	Industrial Worker	Construction
COPC	RfD/RfC UF	Critical Effect	Target Organ	source	HQ	Worker HQ
Manganese	3 (RfD); 1000 (RfC)	CNS Effects	Nervous system	IRIS	0.5	1.5
			HI - Nervous system		0.5	1.5
Arsenic	3 (chronic RfD); 10 (subchronic RfD) 3000 (chronic RfD); 1000	Keratosis and hyperpigmentation	Skin	IRIS	0.01	0.03
Thallium	(subchronic RfD)	Histopathology	Skin	PPRTV	0.6	0.2
			HI - Skin		0.6	0.2
Iron	1.5 (chronic RfD)	Gastrointestinal effects	/	PPRTV	0.1	0.4
			HI - GI system		0.1	0.4
Dimethylphthalate	3000 (subchronic RfD)	Increased absolute and relative liver weight	-	PPRTV	NC	0.000003
			HI - Liver			0.000003

Abbreviations:

COPC = contaminant of potential concern

HQ - hazard quotient

HI - hazard index

NC - not calculated

IRIS - Integrated Risk Information System, United States Environmental Protection Agency (https://www.epa.gov/iris)

PPRTV = Provisional Peer Reviewed Toxicity Values (PPRTVs) derived by the EPA Superfund Health Risk Technical

Support Center (STSC) for the EPA Superfund program

RfD/RfC UF = reference dose/reference concentration uncertainty factor

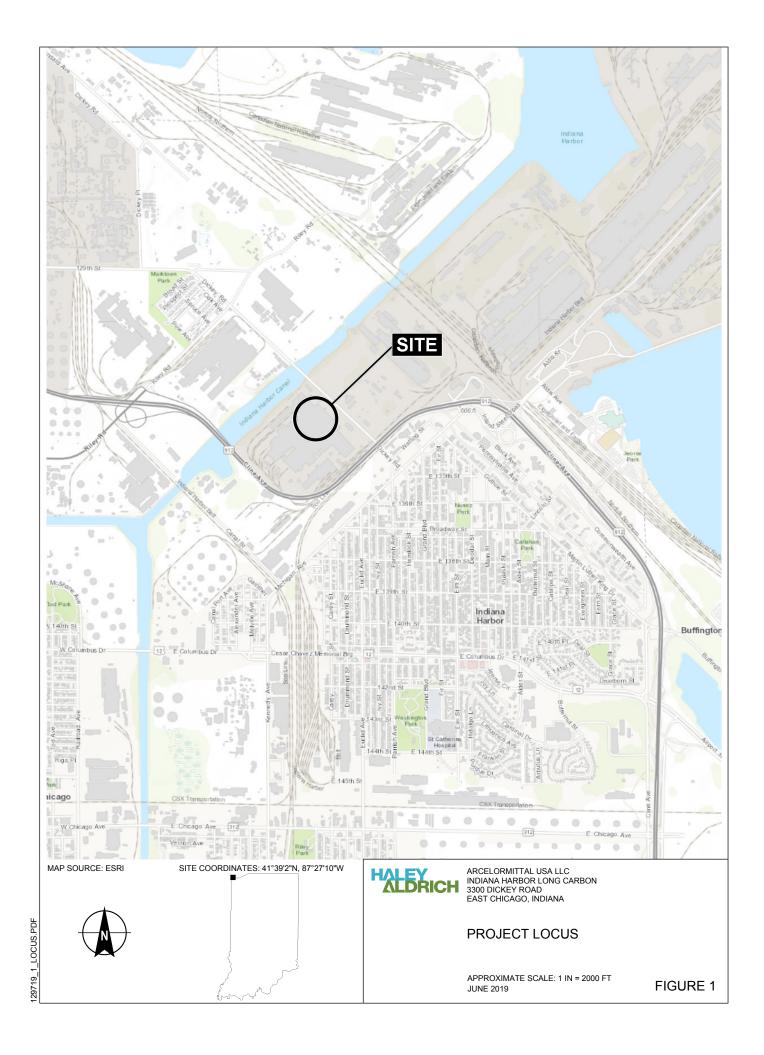
Notes:

Hazard quotient calculations provided in Appendix D-1 (industrial worker) and D-2 (construction worker).

TABLE 5
COMPARISON OF GROUNDWATER DATA TO SCREENING LEVELS FOR A CONSTRUCTION WORKER
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA
FILE NO. 129719

СОРС	Maximum Concentration	Location (Date)	Construction W	vel
			(cancer)	(non-cancer)
Arsenic	22	P-02B (1991)	1,010	648
Iron	7,580	IMW-02-00004D (6/2009)	NC	1,000,000
Benzene	3,300	IMW-03-00004 (4/2019)	5,810	4,560
Tetrachloroethene	187	IFW-02-00023 (9/98)	68,700	20,600
Trichloroethene	45	IFW-02-00023 (9/98)	8,020	265

Abbreviations:


COPC = contaminant of potential concern

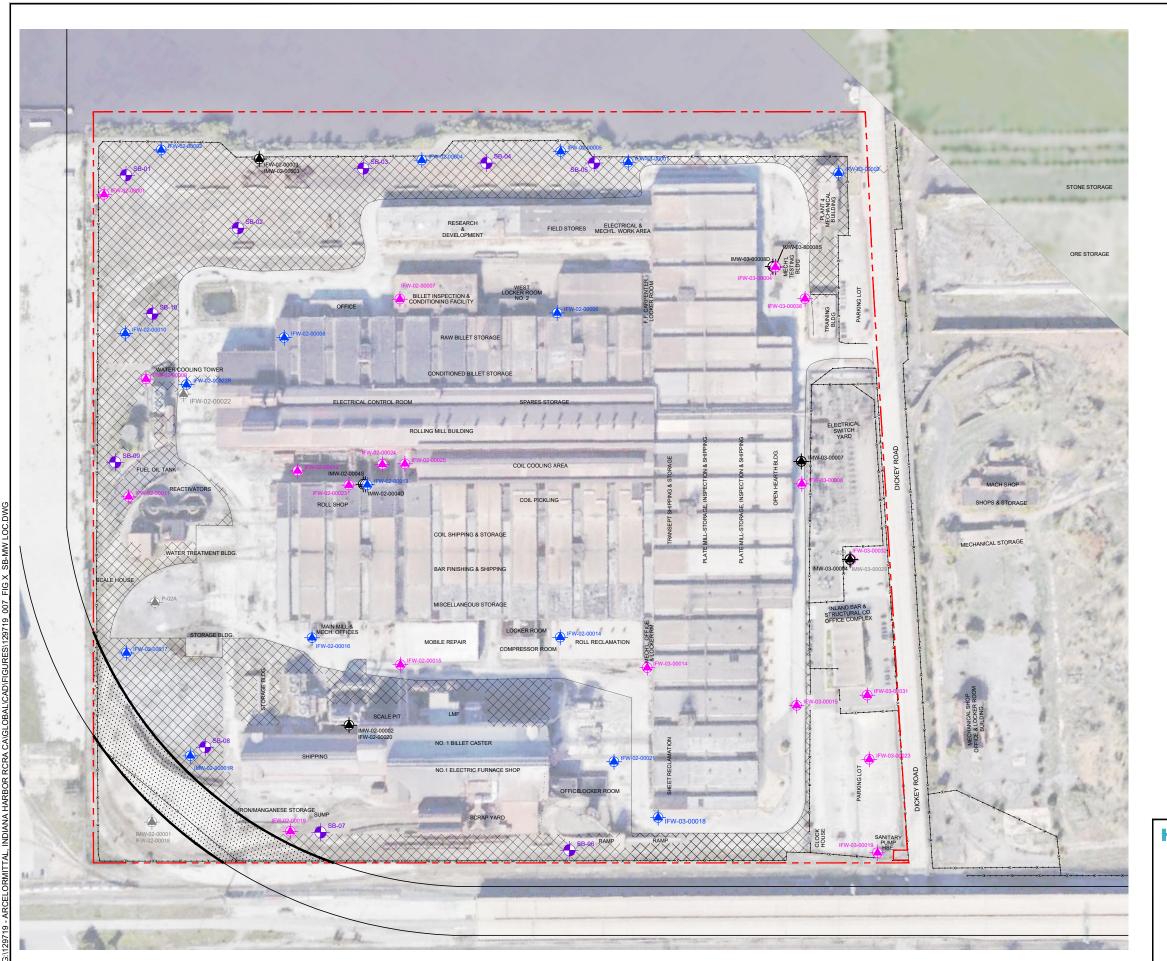
NC = not carcinogenic

Notes:

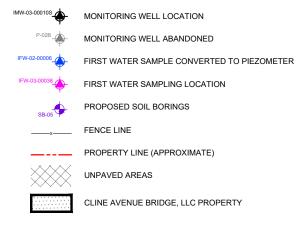
Construction Worker Screening Levels are provided in Appendix D-3, and are based on a target cancer risk of 1E-05 and a target hazard quotient of 1.

- Pathway potentially complete and evaluated in risk assessment.
- O Pathway evaluated and found to be incomplete; no further evaluation recommended.

 NA Not Applicable Receptor not assumed to be potentially exposed via this pathway.

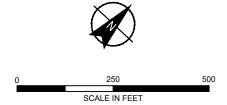

HALEY ALDRICH

ARCELORMITTAL INDIANA HARBOR LONG CARBON EAST CHICAGO, INDIANA


HUMAN HEALTH CONCEPTUAL SITE MODEL

MAY 2019

FIGURE 3



LEGEND

NOTES

PLAN BASED ON SURVEY AND BASE MAP ENTITLED
 "UTILITIES_BASE_IHE_2017_V2010.DWG" PROVIDED BY AECOM
 ON 24 AUGUST 2017.

DRAFT

ARCELORMITTAL INDIANA HARBOR LONG CARBON

SOIL BORING AND MONITORING WELL **LOCATIONS PLAN**

SCALE: AS SHOWN JULY 2019

FIGURE 4

APPENDIX A

Summary of Groundwater Analytical Results from the DSR

ARCELORMITTAL - INDIANA HARBOR LONG CARE EAST CHICAGO, INDIANA		er to Surface W	ater Discharge Exposu	re Pathway	Expo	sure to																			
	Human	Receptors	Ecological Receptors	Wildlife	Grou	ndwater er1A ⁴	Tier 1B ⁶	Tier 1B ⁶ Non-Default	Tier 1B ⁶	IFW-02-00001	IFW-02-00002	! IFW-02-00003	IFW-02-00003	IFW-02-00004	IFW-02-00005	IFW-02-00006	IFW-02-00007	IFW-02-00008	IFW-02-00009	IFW-02-00010	IFW-02-00011	IFW-02-00012	IFW-02-00012	IFW-02-00013	IFW-02-00014
	Tier 1A Carcinogen ¹	Tier 1A Non- Carcinogen ¹	Tier1A ²	Tier1A ³	Carcinoger	Non- Carcinogen	Human Screening Criteria	Human Screening Criteria	Ecological Screening Criteria	4/28/1998 Primary	4/24/1998 Primary	IMW-02-00003 5/1/1998 Duplicate	IMW-02-00003 5/1/1998 Primary	4/22/1998 Primary	4/28/1998 Primary	4/21/1998 Primary	4/21/1998 Primary	4/21/1998 Primary	4/14/1998 Primary	4/24/1998 Primary	4/15/1998 Primary	4/23/1998 Duplicate	4/23/1998 Primary	5/6/1998 Primary	4/23/1998 Primary
Inorganic Compounds (ug/L)																								[a]	
Antimony, Total Arsenic, Dissolved Arsenic, Total Barium, Total	:	2000 - 230 1000	80 - 147.9 1001.11 (IHSC)		1.9	20000	2300			:	:	ND (250) - ND (5) 88	ND (250) - ND (5) 87	:	:	:	:	:	:	:	:	:	:	:	:
Beryllium, Total Cadmium, Total Chromium, Total	-	300 1400 25000 ⁵	17.10 (IHSC) 4.54 (IHSC) 10.98 ⁵	-	:	200 51 310 ⁵	- - 250000	:	109.8	-	:	ND (3) ND (10) ND (50)	ND (3) ND (10) ND (50)	:	:	:	:	:	:	:	:	:	:	:	:
Cobalt, Total Copper, Total Cyanide	-	56000 48000	19 18.14 (IHSC) 5.2	:	:	4100 2000	480000	-	- - 52	-	:	ND (50) ND (50)	ND (50) ND (50)		:	:	-	-	-	:	:	-	-	:	:
Iron, Total Lead, Dissolved Lead, Total Magnesium, Total	-	300	1000 - 17.29 (IHSC)	-	:	42	3000	183906	10000	-	-	895 ^(B) - ND (5) 28300	870 ⁽⁶⁾ - ND (5) 27500	:	-	:	:	:	:	:	-	:	:	-	:
Magnesium, total Manganese, Total Mercury, Total Nickel, Total		50 0.0018 42000	1048.1 (IHSC) 0.9081 100.76 (IHSC)	0.0013		2450 31 2000	500	30651	10481			514 ^(BG) ND (0.5) ND (50)	501 ^[BG] ND (0.5) ND (50)												
Selenium, Total Silver, Total Sodium, Total Thallium, Total	:	3400 26000 -	5 0.12 -	:	:	510 510 - 7.2	:	:		:	:	ND (5) ND (50) 80600 ND (2) J	ND (5) ND (50) 79500 ND (2) J	:		:		:		:					
Tin, Total Vanadium, Total Zinc, Total	:	2300 250000	180 12 231.67 (IHSC)	:	12000 86	31000	:	:	:	:	:	ND (50) ND (50) ND (30)	ND (50) ND (50) ND (30)	:	:	:	:	:	:	:	:	:	:	:	:
Other (ug/L) Ammonia (as N) Chloride	:	:	2065 (IHSC)	:	:	:	:	:	20650	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Hardness as CaCO3 pH (lab) (pH units) Sulfate Sulfide		-		-			-			-	:	:	:	:						:					
Total Dissolved Solids (TDS) Total phenois Total Suspended Solids (TSS)			:																						
PCBs (ug/L) 4,4'-DDD 4,4'-DDT	0.0031 0.00015	0.002	0.032 0.032	0.000011	1 12 1 8.4	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
alpha-BHC Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1260 (PCB-1260)	0.026 0.0000068 0.0000068 0.0000068	:	12.4 0.014 0.014 0.014	0.00012 0.00012 0.00012	0.45 1.4 1.4		-			:	:	:	:	:	:			:		:					
delta-BHC Endosulfan Endrin Endrin ketone	-	0.5 170 0.193	0.014 667 0.05 0.036	-	2.2	510 31	-			:	:	:		:											
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	0.0016 0.00039	0.5 0.29	0.11 0.0038 0.0038		2.2 0.31 0.31		-																		
Semi-Volatile Organic Compounds (ug/L) 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	:	0.36 35	8.3 30	:	:	1000	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1,2-Dichlorobenzene 1,2-Diphenylhydrazine 1,3,5-Trinitrobenzene 1,3-Dichlorobenzene		6000 - - 320	14 - - 52	-		9200 - - 310	:			:	:	:	:	:				:							
1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone	:	63	22 16	:	120		:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:
1-Naphthylamine 2,2-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol		2500	1.2 1.9	:	:	10000	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	200	450 8700 2800	1.4 17 21 19	:	:	10 310 2000 200	:			-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2,4-Dinitrotoluene 2,6-Dichlorophenol 2,6-Dinitrotoluene	1.1	450 -	44 - 81		4.2	310	:			-		-	-	-	-			:		-	-	:		:	:
2-Acetylaminofluorene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene		1000	535 0.396 24 330	:		8200 510 410	:	:	:		:	-		-				:							
2-Methylphenol (o-Cresol) 2-Naphthylamine 2-Nitroaniline 2-Nitrophenol		44000	67 - - 73	:	:	5100 310	:	:	:	:	:	:	-	:	-	:			:	:	-		:		
2-Picoline 2-Picoline 2-Toluidine 3,3-Dichlorobenzidine 3,3-Dimethylbenzidine	0.95	:	4.5		6.4	:	:	:	:	:	:	:	-	-	:	:	:	:	:	-	:	:	:	:	:
3-Methylcholanthrene 3-Methylphenol 3-Nitroaniline		44000	0.0891 67	:	0.13	5100 310	-																		
4,6-Dinitro-2-methylphenol 4-Aminobiphenyl 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol		13 - - 3000	23 - 1.5 34.8 232																						
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	:	44000	232 - 53	:	:	410 - 510 310	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
4-Nitrophenol 4-Nitrophenol 5-Nitro-2-Toluidine 7,12-Dimethylbenz(a)anthracene		:	58			-	-			-		:		:											
7,12-Dimethylphenz(a)anthracene a,a-Dimethylphenethylamine Acenaphthene Acenaphthylene	:	4200	- 27 4840	0.548		4200 730	:			:	:	:		:											
Acetophenone Aniline Anthracene Aramite		630	4.1 0.68	:	130	10200	-				:			:						-	-				
Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	0.038 0.096 0.038	:	0.025 0.014 9.07	:	3.9 0.039 1.5	:		:	:	:	:	:	:	:	:	:		:		:	:	:	:	:	:
Benzo(g.h.i)perylene Benzo(k)fluoranthene Benzoic acid	0.038	:	7.64		0.26 0.8		:				:	:	:	:											
Benzyl Alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate**	0.3 2.8	- - - 60	8.6 - 19000 0.3	:	2.6 200	31000	- - - 28		3	:	:	:		:				:							
Butyl benzylphthalate Carbazole Chlorobenzilate		1500	23 - 7.16	:	- :	2700	:		:																
Chrysene Dialiate Dibenz(a,h)anthracene Dibenzofuran	0.038 - 0.038	:	7.3	:	1.6 5.4 0.039	200	:			:	:	:	:	:											
Diethyl phthalate Dimethoate Dimethyl phthalate Di-n-butyliphthalate	:	1200000 - 270000 31	110 - 1000 19	:		82000 - 1000000 10000	:			:	:	:	:	:	:			:							
Di-n-octyl phthalate Dinoseb Diphenylamine Disulfoton	:	69	30 0.48 412	:	:	20		:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:
Ethyl methanesulfonate Famphur Fluoranthene		9.5	0.0402 - 3.6			210	-				:														
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	0.00045 0.24	320 0.046 - 1500	2.4 0.0003 0.053 77		1.8	2000 - 31 610	-			:	:	:		:				:							
Hexachloroethane Hexachloropropene Indeno(1,2,3-cd)pyrene Isophyrone	0.038	7.6 - - 110000	77 8 - 4.31 830	:	0.022 3000	100	-							:						-	-				
Isophorone Isosafrole Methapyrilene Methyl methanesulfonate		1900	:	-	-	-	:				:	:	:	:						:					
Naphthalene Nitrobenzene N-Nitrosodiethylamine N-Nitrosodimethylamine	0.18 0.55 0.73	28000 - -	26 220 768			2000 51 -	:			:	:	:		:											
N-Nitrosodi-N-butylamine N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine N-Nitrosomethylethylamine	0.73 2.9 74	:	25	:	0.41 580		-			:	:	:	:	:				:		-			:		
N-Nitrosomorpholine N-Nitrosopiperidine N-Nitrosopyrrolidine o, o, o - Triethylphosphorothioate	13	:	58.2	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:
P-DIMETHYLAMINOAZOBENZENE Pentachlorobenzene Pentachloroethane		0.18	3.1	:			-			:	:	:	:	:						:					
Pentachloronitrobenzene Pentachlorophenol Phenacetin Phenanthrene	84	24000	1130.56 (IHSC) 0.93	:	24	310	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Phenol Phorate p-Phenylenediamine Pronamide		2300	180 3.62	:	5800 3 3800 1200	3100	:	:	:	:	:	:	:	:						:	:			:	
Pyrene Pyridine Safrole Suffoteo	:	15	0.3 2380	:	-	140	:	:		:	:	:	-	-	:	:	:	:	:	-	:	:	:	:	:
Thionazin Volatile Organic Compounds (ug/L) 1,1,1,2-Tetrachloroethane		:	:		110	:			:		:	:	:	-	:	:	:	:	:	:	:	:	:	:	:
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	17	3000	410 100 87	:	14 50	29000	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1,1-Dichloroethane 1,1-Dichloroethene 1,2-3-Tirchloropropane 1,2,4-Trimethylbenzene		27000 4100 - -	740 210	:		10000 5100 - -	:			:	:	:	:	:	:			:		:	:			:	
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloroethene (total)	0.17 210	:	- 980 -	:	1.4	:	:	:	:	:	:	:	-	:	-	:				:	-		:		
1,2-Dichloropropane 1,4-Dioxane 2-Butanone (Methyl Ethyl Ketone)	5	1300	360 14000		42	61000	:	:	:	-	:	:	-	-	:	:	:	:	:	:	:	:	:	:	:
Chloroethyl vinyl ether Hexanone Hembyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone		220000	99 170 1700	:	:	6100 8200 92000	:				:	-	-	:	-					:	-			-	
Acetonitrille Acrolein Acrylonitrille Allyl chloride	3	190	12000 0.19 63	:	:	51	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Benzene Bromodichloromethane Bromoform	310 150 710	510 13000 8100	98 - 61	-	52 46 360	-	:	:	:	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)
Bromomethane (Methyl Bromide) Carbon disulfide Carbon tetrachloride Chlorobenzene	- 19	100000 120 3200	16 15 40 47	:	22	140 16000 - 2000	:	:	:	:	:	:	:	:						:	:			:	
Chloroethane Chloroform (Trichloromethane) Chloromethane (Methyl Chloride) Chloroprene	1700	11000	170	-	990 80 -	1000	:	:	:	-	:	:	-	-	:	:	:	:	:	:	:	:	:	:	:
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane	170	46000	620 1.9	:	29 -	1000	:				:	-	-	:	-					:	-			-	
Dibromochloromethane Dibromomethane Dichlorodifluoromethane (CFC-12) Ethyl methacrylate	86 - -	12000	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ethylbenzene lodomethane Isobutyl alcohol	:	9100	110	:		10000				ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)
isopropylbenzene (Cumene) Methyl Acetate Methyl acrylonitrile Methyl cyclohexane		:	:	-	:		:			-	:	:	:	-	:	:		:		:	:			:	
Methyl methacrylate Methyl Tert Butyl Ether Methylene chloride	2600	90000	2800 1500	:	380	-	:	:	:	- - - - -		-		- - - - -	-	-	- - - ND (47)			-		-		-	
Naphthalene Propionitrile (Ethyl cyanide) Styrene Tetrachloroethene	- - - 60	1900 - 32000 1700	26 - 32 60	-	- - - 55	2000	:	:	:	ND (17) - - ND (16)	ND (17) J - - ND (16)	ND (17) - - ND (16)	ND (17) - - ND (16)	ND (17) - - ND (16)	ND (17) - - ND (16) J	ND (17) - - ND (16)	ND (17) - 127 ^(ACE)	ND (17) - - ND (16)							
Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene	- - 170	51000 25000 46000	94 560 1.9	:	- - 29	8200 2000		:	:	ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10)
trans-1,4-Dichloro-2-butene Trichloroethene Trichlorofluoromethane (CFC-11) Trifluorotrichloroethane (Freon 113)	370 -	:	260	:	:	31			:	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15) J	ND (15) J
Vinyl acetate Vinyl chloride Xylene (total)	14	4900 150000	248 930 35	-	4	100000		:	:	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)
Notes and abbreviations on last page				1	1		1																		

				IFW-02-00018 IMW-02-00001						N	FD													
	4/17/1998 Primary	4/15/1998 Primary	4/14/1998 Primary	4/29/1998 Primary	3/7/2019 Primary	4/10/1998 Primary	4/29/1998 Primary	4/23/1998 Primary	4/21/1998 Primary	3/8/2019 Primary	3/8/2019 Primary	9/28/1998 Primary	9/29/1998 Primary	9/29/1998 Primary	7/9/1996 Primary	7/8/1996 Primary	7/10/1996 Primary	7/12/1996 Primary	8/12/1996 Primary	8/27/1996 Primary	9/3/1996 Primary	7/11/1996 Primary	7/9/1996 Primary	7/10/1996 Primary
Inorganic Compounds (ug/L) Antimony, Total Arsenic, Dissolved		•	-	ND (250)	ND (10)	:	ND (250)	:	:	-	:	[8] - -			:	:		-	:	•	•	:		
Arsenic, Total Barium, Total Beryllium, Total				ND (5) 107 J ND (3)	12 ^(E) 32 J ND (5)		ND (3)																	
Cadmium, Total Chromium, Total Cobalt, Total	:	:	:	ND (10) ND (50) J ND (50)	0.41 J 20 ^[0] 0.93 J	:	ND (50) J	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Copper, Total Cyanide Iron, Total		-		ND (50) J 24600 J ^[BC]	17 J - 630 ^[2]	:	ND (50) J	-	-			:	:		:			-	-		-			
Lead, Dissolved Lead, Total Magnesium, Total				ND (5) 46500	23 ^[C] 18000	:	ND (5) 43000	:			:	:			:	:								
Manganese, Total Mercury, Total Nickel Total				378 ⁽⁸⁾ ND (0.5) ND (50)	440 ^(a) ND (0.2) 6.8 J		- ND (50)																	
Selenium, Total Silver, Total Sodium, Total		:	:	ND (5) ND (50) 70000	ND (15) ND (5) 14000	:	ND (5) 24500	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Thallium, Total Tin, Total Vanadium, Total Zinc, Total			:	ND (2) ND (50) ND (50) 32	4 J ND (100) 12 J 54	:	ND (30)	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:
Other (ug/L) Ammonia (as N)							-																	
Chloride Hardness as CaCO3 pH (lab) (pH units) Sulfate			:	:	:	:		:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:
Sulfitide Total Dissolved Solids (TDS) Total phenols	:					:	-	-			:	-	-		:	:		- :						
Total Suspended Solids (TSS) PCBs (ug/L) 4,4-DDD		:		:	:	:	:	:	:	:	:	:	:		:	:		:	:	:	:	:		
4,4'-DDD 4,4'-DDT alpha-BHC Aroclor-1016 (PCB-1016)	-	:	:	:	:	:	:	:	:	:	:	:	:	- :	:	:	:	:	:	:	:	:	- :	:
Aroclor-1221 (PCB-1221) Aroclor-1260 (PCB-1260) delta-BHC Endosulfan					:											:								
Endrin	-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	:				:	:	:	:			:	:			:	:		:				:		
Semi-Volatile Organic Compounds (ug/L) 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1,2-Diphenylhydrazine 1,3,5-Trinitrobenzene 1,3-Dichlorobenzene																								
1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoguinone	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1-Naphthylamine 2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	:	:	:		:	:	:	:			:	:			:	:		:			:			
2.4,5-Trichlorophenol 2.4,6-Trichlorophenol 2.4-Dichlorophenol 2.4-Dimethylphenol 2.4-Dinitrophenol	:	:	:	:	-	:	:	:	-	-	:	:	:	:	:	:	:	:	-	:	:	-	:	:
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichtorophenol 2,6-Dinitrotoluene	-	-	:				:	:	-	-	:	:			:	-		-	:	:	:	:		
2-Acetylaminofluorene 2-Chloronaphthalene 2-Chlorophenol	-	-	-		-	-	-	:	-	-					-	-		-	-		-			
2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Naphthylamine 2-Nitroaniline	:			:	:	:	:	:	-		:			:	:	:		:					:	
2-Nitrophenol 2-Picoline 2-Toluidine	:	-	-	:	:	:	:	-	-	-	:	:	Ė	:	:	-	:	:	:	:	:	:	:	:
3,3'-Dichlorobenzidine 3,3-Dimethylbenzidine 3-Methylcholanthrene 3-Methylcholanthrene	-	:	-	:	:	:	:	:	-		:	:	:		:	:	-	:	-	:	:	-		:
3-Methylphenol 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Aminobiphenyl																								
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitrophenol 4-Nitrophenol						:		-			:	-			:	:		:						
4-Nitroquinoline-N-oxide 5-Nitro-2-Toluidine 7,12-Dimethylbenz(a)anthracene	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
a,a-Dimethylphenethylamine Acenaphthene Acenaphthylene Acetophenone																								
Aniline Anthracene Aramite																:								
Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic acid																								
Benzyl Alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
bis(2-Ethylhexyl)phthalate** Butyl benzylphthalate Carbazole Chlorobenzilate	:														:	:								
Chrysene Diallate Dihenz(a h)anthracene	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	-	:		:	:	:	:	:
Dibenzofuran Diethyl phthalate Dimethoate Dimethyl phthalate						:					:				:	:		:						
Di-n-butyiphthalate Di-n-octyl phthalate Dinoseb					:											:								
Diphenylamine Disulfoton Ethyl methanesulfonate Famphur		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Fluoranthene Fluorene Hexachlorobenzene																								
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Hexachloropropene	:	:	-	:	:	:	:	:	-	:	:	:	:	:	:	:	-	:	:	:	:	:	:	:
Indeno(1,2,3-cd)pyrene Isophorone Isosafrole																:								
Methapyrilene Methyl methanesulfonate Naphthalene Nitrobenzene	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Nitrosediethylamine N-Nitrosodimethylamine N-Nitrosodi-N-butylamine																								
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine N-Nitrosomethylethylamine	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
N-Nitrosomorpholine N-Nitrosopiperidine N-Nitrosopyroildine o.o.o-Triethylphosphorothioate P-DIMETHYLAMINOAZOBENZENE	:			:		:	:	:			:	:	:	:	:	:		:					:	:
Pentachlorobenzene Pentachloroethane	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Pentachloronitrobenzene Pentachlorophenol Phenacetin Phenanthrene	:			:		:	:	:	-		:			:	:	:		:					:	:
Phenoi Phorate p-Phenylenediamine Pronamide	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Pronamide Pyrene Pyridine Safrole	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:		:
Safrole Suffotep Thionazin Volatile Organic Compounds (ug/L)	:	:	:		-	:	:	:	-	-	÷	÷	÷		:	-		:	-	-	:			
1,1,1,2-Tetrachloroethane 1,1,1-Tritchloroethane 1,1,2,2-Tetrachloroethane	:	:	:	:	:	:	:	:	:	ND (1) ND (1)	ND (1) ND (1)	:	:	:	:	:	:	:	:	:	:	:	:	:
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	-	:	:	:	:	:	:	:	- :	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	:	:	:	:	:	:	:	:	:	:	:	:	:
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide)	-	:	:	:	:	:	:	:	:	ND (1) ND (2) ND (1)	ND (1) ND (2) ND (1)	:	:	:	:	:	:	:	:	:	:	:	:	:
1,2-Dichloroethane 1,2-Dichloroethene (total) 1,2-Dichloropropage										ND (1) ND (1)	ND (1) ND (1) ND (1) ND (1)													
1,4-Dioxane 2-Butanone (Methyl Ethyl Ketone) 2-Chloroethyl vinyl ether	:	:	:	:	:	:	:	:	:	ND (1) ND (1) ND (1) ND (10)	ND (1) ND (1) ND (10)	:	:	:	:	:	:	:	:	:	:	:	:	:
Hexanone Hethyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone Acetonitrile	:	:	:	:	:	:	:	:	-	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	:	:	:	:	:	:	:	-	:	:	:	:	:
Acrolein Acrylonitrile Allyl chloride	:	:	:	:	:	:	:	:	:	-	:	:	:		:	:	:	:	:	:	:	:		
Benzene Bromodichloromethane Bromoform	ND (17)	ND (17)	ND (17)	ND (17)	:	ND (17) - -	ND (17) - -	ND (17) - -	ND (17) - -	3.4 ND (1) ND (1)	3.6 ND (1) ND (1)	ND (17) - -	ND (17)	ND (17)	ND (17) - -	ND (17) - -	ND (17)	ND (17)	ND (17) - -	ND (17) - -	ND (17) - -	ND (17) - -	ND (17)	ND (17) - -
Bromomethane (Methyl Bromide) Carbon disulfide Carbon tetrachloride Chlorobenzene	:	:	:	:	:	:	-	:	-	ND (1) ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1) ND (1)	:	:	:	:	:	:	-	-	:	:	:	:	-
Chloroethane Chloroform (Trichloromethane) Chloromethane (Methyl Chloride)	-	:	-			:		:	-	ND (1) ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1) ND (1)	:	-	-	:	:		-					-	
Chloroprene cis-1,2-Dichloroethene cis-1,3-Dichloropropene	:	:	:	:	:	:	:	:	:	0.17 J ND (1)	0.16 J ND (1)	:	:	:	:	:	:	:	:	:	:	:	:	:
Cyclohexane Dibromochloromethane Dibromomethane	:	-	-	:	:	:	-	:	-	1.7 ND (1)	1.8 ND (1)	:	:	:	:	-	:	-	-	:	-	:	:	:
Dichlorodifluoromethane (CFC-12) Ethyl methacrylate Ethylbenzene Iodomethane	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	:	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (1) - 0.13 J	ND (1) - 0.13 J	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)
Isobutyl alcohol Isopropylbenzene (Cumene)		-	-	:	:	:	:	:	:	10 ND (10)	- 10 ND (10)	:	:	:	:	-	:	:	:	:	:	:	:	:
Methyl acrylonitrile Methyl cyclohexane Methyl methacrylate Methyl Tert Butyl Ether	:	:	-	:	:	:	:	:	:	3.3	3.6 ND (1)	:	:		:	:	:	:	:	:	:	:		:
Methyl Tert Butyl Ether Methylene chloride Naphthalene Propionitrile (Ethyl cyanide)	ND (17) J	ND (17)	ND (17)	ND (17)	:	ND (17)	ND (17)	ND (17)	72.7 ^[C]	ND (1) ND (5) ND (1)	ND (1) ND (5) ND (1)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)
Styrene Tetrachloroethene Toluene	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	-	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	187 (ACE) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)
trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene	:	:	:		:	-				ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1) ND (1)	:		:	:								:	:
Trichloroethene Trichlorofluoromethane (CFC-11) Trifluorotrichloroethane (Freon 113)	ND (15) J - -	ND (15) J - -	ND (15) J	ND (15) J	:	ND (15)	ND (15)	ND (15)	ND (15)	ND (1)	ND (1)	44.5 [7]	ND (15)	ND (15)	ND (15) - -	ND (15) - -	ND (15)	ND (15) - -	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)
Vinyl acetate Vinyl chloride Xylene (total)	ND (17)	ND (17)	- ND (17)	- ND (17)	:	ND (17)	- ND (17)	ND (17)	- ND (17)	ND (1) ND (2)	ND (1) ND (2)	- ND (17)	- ND (17)	- ND (17)	- ND (17)	ND (17)	- ND (17)	- ND (17)	- ND (17)	- ND (17)	- ND (17)	- ND (17)	- ND (17)	- ND (17)
Notes and abbreviations on last page																								

	IFW-03-00019	9 IFW-03-0002	3 IFW-03-00029	9 IFW-03-00029	IFW-03-00029	IFW-03-00029A	IFW-03-00029B	IFW-03-00029C	: IFW-03-00029E) IFW-03-00029E	IFW-03-00031	IFW-03-00031	IFW-03-00032	2 IFW-03-00032	2 IFW-03-00038	IMW-02-00004D) IMW-02-00004D	IMW-02-00004S	IMW-02-00004S	IMW-02-000048	S IMW-03-00004	IMW-03-00004	IMW-03-00004	IMW-03-00004
	7/8/1996 Primary	7/24/1996 Primary	7/22/1996 Primary	7/22/1996 Primary	8/26/1996 Primary	8/8/1996 Primary	8/8/1996 Primary	8/8/1996 Primary	8/9/1996 Primary	8/9/1996 Primary	7/30/1996 Primary	8/30/1996 Primary	8/6/1996 Primary	8/6/1996 Primary	9/3/1996 Primary	11/10/2008 Primary	6/10/2009 Primary	11/10/2008 Primary	6/10/2009 Primary	3/8/2019 Primary	8/5/1996 Primary	8/6/1996 Primary	8/13/1996 Primary	8/13/1996 Primary
					Ans	ilytical data repla	ced by IMW-03-0	0004					Analytical da	ata replaced by	IMW-03-00004									
Inorganic Compounds (ug/L) Antimony, Total Arsenic, Dissolved	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	4.8 JB	ND (60)	5.1 JB	ND (60)	:	:	:	:	:
Arsenic, Total Barium, Total Beryllium, Total	:	:	:	:	:	:	:	:	:	:	:	:	:	:	- :	235	239	70.3 J	74.9 J	:	:	:	:	:
Cadmium, Total Chromium, Total Cobalt, Total	:		:	:	:	:	:	:	:	:	:	:	:	:	:	ND (5) - ND (50)	ND (5) - ND (50)	ND (5) ND (50)	ND (5)	:	:	:	:	:
Copper, Total Cyanide Iron, Total			-													ND (10) 7550 ^(8C)	ND (10)	ND (10)	- ND (10) 228					
Lead, Dissolved Lead, Total	:										:	:				:	7280 ^(BC)	206	:		:			:
Magnesium, Total Manganese, Total Mercury, Total	-	-	:		:	:	:	:	:		:	:	:			54600 84.4 ^[8] ND (0.2)	58100 91.1 ^[8] ND (0.2)	22600 474 ^(B) ND (0.2)	25300 593 ^(b) ND (0.2) ND (40)	:	:	:	-	:
Nickel, Total Selenium, Total Silver, Total Sodium, Total			:				:				:	-	:			ND (40) ND (5) 46300	ND (40) ND (5) - 43800	ND (40) ND (5) 92700	ND (40) ND (5) - 113000	:	:	- :		:
Thallium, Total Tin, Total Vanadium, Total												:				- ND (50)	- ND (50)	- ND (50)	- ND (50)					
Zinc, Total Other (ug/L)	-	-	-	•			•	•				-		-					-	-	-	-	-	-
Ammonia (as N) Chloride Hardness as CaCO3	-	-			:	:	:	:	:	:	:	:	:		:	3100 ^(C) 54100 680000	3600 ^[C] 69800 780000	500 151000 310000	500 126000 330000	-	:	-	-	:
pH (lab) (pH units) Sulfate Sulfide			:		:	:	:	:	:	:	:	:	:		:	347000 ND (1000)	342000 1100	148000 ND (1000)	144000 ND (1000)	:	:	:		:
Total Dissolved Solids (TDS) Total phenois Total Suspended Solids (TSS)	:		:		:	:	:	:	:	:	:	:	:	:	:	980000 - 12000	1000000 - 21000	630000 J - ND (4000)	720000 - ND (4000)	:	:	:	:	:
PCBs (ug/L) 4,4'-DDD 4,4'-DDT	-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
alpha-BHC Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221)			:	:	:	:	:	:	:	:		:	:	:	:	1	:	:	:	:	:	:		:
Aroclor-1260 (PCB-1260) delta-BHC Endosulfan Endrin			:		:	:	:	:	:	:	:	:	:		:	:	:		:	:	:	- :	-	:
Endrin ketone gamma-BHC (Lindane) Heptachlor																								
Heptachlor epoxide Semi-Volatile Organic Compounds (ug/L)		-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene			- :		:	:	:	:	:	:	:	:	:		:	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	- :	:	- :		
1,2-Diphenylhydrazine 1,3,5-Trinitrobenzene 1,3-Dichlorobenzene		- :	:	:	:	:	:	:	:	:		:	:	:	:	ND (50)	ND (50)	ND (50)	ND (50)	:	:	:		:
1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine																ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	-	:			-
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	:		:		:	:	:	:	:	:		:	:	:	:	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	-	-	:	-	:
2.4.6-Trichlorophenol 2.4-Dichlorophenol 2.4-Dimethylphenol	:	:	-		:	:	:	:	:	:	:	:	:	:	:					:	:	:	:	:
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichlorophenol	:	- :			:	:	:	:	:	:	:	:	:	:	:	ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)	:	:	:		:
2,6-Dinitrotoluene 2-Acetylaminofluorene 2-Chloronaphthalene 2-Chlorophenol	:	- 1	Ē		:	:	÷	÷	÷	:	:	:	:	:	÷	ND (10) ND (100) - ND (10)	ND (10) ND (100) - ND (10)	ND (10) ND (100) - ND (10)	ND (10) ND (100) - ND (10)	-	:	:		-
2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Naphthylamine											:					ND (10) ND (10) - ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) - ND (10)	ND (10) ND (10) - ND (10)					
2-Nitroaniline 2-Nitrophenol 2-Picoline	:										:	:				ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)		:		:	
2-Toluidine 3,3'-Dichlorobenzidine 3,3-Dimethylbenzidine			:		:	:	:	:	:	:	:	-	:	:	:	ND (50) ND (50)	ND (50) 50 R	ND (50) ND (50)	ND (50) 50 R		:		-	-
3-Methylcholanthrene 3-Methylphenol 3-Nitroaniline	:	:			:	:			:	:	:	:	:	:	:	ND (10)	ND (10)	ND (10) J	ND (10)	:	:	:	:	:
4,6-Dinitro-2-methylphenol 4-Aminobiphenyl 4-Bromophenyl phenyl ether	-		:	:	:	:	:	:	:	:	:	:	:		:	ND (50) ND (50) ND (10)	ND (50) ND (50) ND (10)	ND (50) ND (50) ND (10)	ND (50) ND (50) ND (10)	:	:	:	-	:
4-Chloro-3-methylphenol 4-Chloroanillen 4-Chlorophenyl phenyl ether 4-Methylphenol																								
4-Nitroaniline 4-Nitroguinoline-N-oxide																ND (50)	ND (50)	ND (50)	ND (50)					
5-Nitro-2-Totuidine 7,12-Dimethylbenz(a)anthracene a,a-Dimethylphenethylamine		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	
Acenaphthene Acenaphthylene Acetophenone		- :	:		:	:	:	:	:	:	:	:	:	:	:	ND (10)	ND (10)	ND (10)	ND (10)	:	:	:		:
Aniline Anthracene Aramite		:	:		:	:	:	:	:	:	:	:	:		:	:	:	:	:	:		:	:	:
Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene			:			:	:	:			:		:			ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	:	-	:		:
Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(c acid																								
Benzyl Alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	-	- :	:	:	:	:	:	:	:	:	:	:	:	:	:	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10) J	ND (10) ND (10)	:	:	:	- :	:
bis(2-Ethylhexyl)phthalate** Butyl benzylphthalate Carbazole	-	- :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	- :	:
Chlorobenzilate Chrysene Diallate		:	:	:	:	:	:	:	:	:		-	:	:	:	- 10 R	- ND (10)	10 R	- ND (10)	:	:	:		:
Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethoate		- :	:	:	:	:	:	:	:	:		:	:	:	:	- ND (10)	ND (10)	ND (10)	ND (10)	:	:	:		:
Dimethyl phthalate Di-n-butylphthalate Di-n-octyl phthalate																ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) - ND (10)					
Dinoseb Diphenylamine Disulfoton																ND (20) ND (10) ND (50)	ND (20) ND (10) ND (50)	ND (20) ND (10) ND (50)	ND (20) ND (10) ND (50)					
Ethyl methanesulfonate Famphur Fluoranthene		:	:	:	:	:	:	:	:	:		-	:	:	:	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	:	:	:		:
Fluorene Hexachlorobenzene Hexachlorobutadiene		- :	:		:	:	:	:	:	:	:	:	:		:	- - ND (50)	- - -	- - -	-	:	:	:		:
Hexachlorocyclopentadiene Hexachloroethane Hexachloropropene Indeno(1,2,3-cd)pyrene																ND (10) ND (100) ND (100) ND (10)	ND (50) ND (10) ND (100) ND (10)	ND (50) ND (10) ND (100) ND (10)	ND (50) ND (10) ND (100) ND (10)					
Isophorone Isosafrole Methapyrilene	- :	- :	:	:	:	:	:	:	:	:	:	:	:	:	:					:	:	:	- :	:
Methyl methanesulfonate Naphthalene Nitrobenzene		:	:		:	:	:	:	:	:	:	:	:		:	ND (10)	ND (10)	ND (10)	- ND (10)	:		:	:	:
N-Nitrosodiethylamine N-Nitrosodimethylamine N-Nitrosodi-N-butylamine N-Nitrosodi-n-propylamine		- :	:	:	:	:	:	:	:	:		:	:	:	:	ND (10) ND (10) - ND (10)	ND (10) ND (10) - ND (10)	ND (10) ND (10) - ND (10) J	ND (10) ND (10) - ND (10)	:	:	:		:
N-Nitrosodiphenylamine N-Nitrosomethylethylamine N-Nitrosomorpholine																ND (10) ND (10) ND (10) ND (10) J	ND (10) ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10) ND (10) J	ND (10) ND (10) ND (10) ND (10)					
N-Nitrosopiperidine N-Nitrosopyrrolidine o.o.o-Triethylohosohorothioate	-	- :	:	:	:	:	:	:	:	:	:	:	:	:	:	()	-	:	- (,	:	:	:	- :	:
P-DIMETHYLAMINOAZOBENZENE Pentachlorobenzene Pentachloroethane		:	:	:	:	:	:	:	:	:		-	:	:	:	1	:	:	:	:	:	:		:
Pentachloronitrobenzene Pentachlorophenol Phenacetin Phenarithrene		- :	:	:	:	:	:	:	:	:	:	:	:	:	:	ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)	ND (50) ND (10) - ND (10)	ND (50) ND (10) - ND (10)	:	:	:		:
Phenol Phorate p-Phenylenediamine		1	:		:	:	:	:	:	:		:	:		:	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)		:			
Pronamide Pyrene Pyridine			:		:	:	:	:	:	:	:	:	:	:	:	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	-	-	:	:	:
Safrole Sulfotep Thionazin	:	- 1	-		:	:			:	:	:	:	:	:	:	ND (20) ND (50)	ND (20) ND (50)	ND (20) ND (50)	ND (20) ND (50)	:	:	:		:
Volatile Organic Compounds (ug/L) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ND (1) ND (1)	:	ND (1)	:	:	:	:
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	:				:	:			:	:	:	:		:	:		:	1.8	ND (1) ND (1) 0.86 J	ND (1) ND (1) ND (1)	:			-
1,1-Dichloroethene 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	:	:	:		:	:	:	:	:	:	;	:	:	:	:	ND (1) ND (1)	ND (1) ND (1)	0.35 J ND (1)	:	ND (1) ND (1)	:	:	-	:
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane	:	:			:	:			:	:	:	:	:	:	:	ND (1) J	ND (1)	ND (1)	ND (2)	ND (2) ND (1) ND (1)	:	:	:	:
1,2-Dichloroethene (total) 1,2-Dichloropropane 1,4-Dioxane	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		-		ND (1)	ND (1) ND (1) ND (1)	:	:	:	:
2-Butanone (Methyl Ethyl Ketone) 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	:	- :			:	:	:	:	:	:	:	:	:	:	:	ND (10) - ND (10) ND (10)	ND (10) - ND (10) ND (10)	ND (10) - -	- ND (10)	ND (1) ND (10) ND (10) ND (10)	:	:		:
Acetone Acetonitrile Acrolein	:										:	:				ND (10) ND (10) ND (20) ND (20)	ND (10) ND (10) ND (20) ND (20)	ND (20)	ND (10) ND (10) - ND (20)	ND (10) ND (10)	:			
Acrylonitrile Allyl chloride Benzene	ND (17)	ND (17)	ND (17)	ND (17)	1600 [ABCE]	22	20	9100 [ABCE]	ND (17)	4600 [ABCE]	ND (17)	ND (17)	ND (17)	- - ND (17)	300 (ce)	ND (20) ND (1)	ND (20) ND (1)	ND (2) J	ND (20) ND (20) ND (1)	ND (1)	5900 [ABCE]	4700 [ABCE]	1400 ^[ABCE]	1600 [ABCE]
Bromodichloromethane Bromoform Bromomethane (Methyl Bromide)	()	-	:	:	:	:	:	:	:	:		-	:	-	:	ND (1) J - ND (1) J	ND (1) ND (1)	ND (1) J	ND (1) J ND (1)	ND (1) ND (1) ND (1)	-	:	-	-
Carbon disulfide Carbon tetrachloride Chlorobenzene	:	- :	:		:	:	:	:	:	:	:	:	:	:	:	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	- ND (1)	ND (1) ND (1) ND (1)	:	:	÷	:
Chloroethane Chloroform (Trichloromethane) Chloromethane (Methyl Chloride)	:			:	:	:	:	:	:	:	:	:	:	:	:	ND (1) J - -	ND (1)	ND (1) ND (1)	ND (1)	ND (1) ND (1) ND (1)	:	:		:
Chloroprene cis-1,2-Dichloroethene cis-1,3-Dichloropropene	:	- :	-		:	:	:	:	:	:	:	:	:	:	:	ND (2)	ND (2)	230 ND (1) J	ND (2) 280 -	28 ND (1)	:	:	-	:
Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane (CFC-12)	-				:	:			:	:	:	:	:	:	:	ND (1)	ND (1) J	- ND (1) J	ND (1) J	ND (1) ND (1) ND (1)	-	:		-
Dichlorodifluoromethane (CFC-12) Ethyl methacrylate Ethylbenzene Iodomethane	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	21	ND (8.2)	13	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (8.2)	ND (1) - ND (1)	ND (1) J - ND (1)	ND (1)	ND (1)	ND (1) ND (1)	- - 18	15	8.4	8.6
lodomethane Isobutyl alcohol Isopropylbenzene (Cumene) Methyl Acetate	:				:	:			:	:	:	:			:	(1) CIN	(1) UM - -	:	ND (1) - -	ND (1) ND (10)	:	:	-	:
Methyl acrylonitrile Methyl cyclohexane Methyl methacrylate	:										:	:				- - ND (2)	2 R	ND (2)		ND (1)	:			
Methyl Tert Butyl Ether Methylene chloride Naphthalene	ND (17)	ND (17)	23	23	28 ^[C]	ND (17)	ND (17)	28 ^[C]	ND (17)	31 ^[0]	ND (17)	ND (17)	35 ^[C]	24	ND (17)	(2)		- :	ND (1)	ND (1) ND (5) ND (1)	38 ^(c)	22	21	ND (17)
Naphthalene Propionitrile (Ethyl cyanide) Styrene Tetrachloroethene	ND (17) - - ND (16)	ND (17) - - ND (16)	23 - - ND (16)	23 - - ND (16)	281-1 - - ND (16)	ND (17) - - ND (16)	ND (17) - ND (16)	-	ND (17) - - ND (16)	31 - - ND (16)	ND (17) - - ND (16)	ND (17) - - ND (16)	35 · · · - ND (16)	24 - - ND (16)	ND (17) - - ND (16)	ND (1)	ND (1)	4 R - 47 J	ND (1) 52	ND (1) ND (1) 12	38 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	22 - - ND (16)	21 - - ND (16)	ND (17) - - ND (16)
Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (10)	ND (16) ND (10)	- (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (0.5) ND (1)	ND (0.5) ND (1) J	ND (1) 10	52 - 8.3 ND (1) J	ND (1) 0.68 J ND (1)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)	ND (16) ND (10)
trans-1,4-Dichloro-2-butene Trichloroethene Trichlorofluoromethane (CFC-11)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (15)	ND (1) ND (1)	ND (1) J ND (1)	1 R 12	ND (1) J - 11 ND (1)	4.1 ND (1)	ND (15)	ND (15)	ND (15)	ND (15)
Trichloroffluoromethane (CFC-11) Triffluorotrichloroethane (Freon 113) Vinyl acetate Vinyl chloride	1		:		:	:	:	:	:	:	:	:			:	:	:	ND (2) 220 [AE]	ND (1) - - 92 ^[AE]	ND (1) ND (1) - 0.31 J	:	:	-	:
Vinyl chloride Xylene (total) Notes and abbreviations on last page	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	- 1	ND (17)	ND (17)	ND (17)	ND (17)	ND (17)	ND (1)	ND (1)	ND (1)	92. '	0.31 J ND (2)	ND (17)	ND (17)	ND (17)	ND (17)
Total and appreviations on last page																								

	IMW-03-00004 9/23/2004 Primary	IMW-03-00004 12/1/2004 Primary	1/27/2015 Primary	8/19/2015 Primary	IMW-03-00004 1/20/2016 Primary	IMW-03-00004 5/11/2016 Primary	IMW-03-00004 10/12/2016 Primary	IMW-03-00004 5/31/2017 Primary	IMW-03-00004 1/24/2018 Primary	IMW-03-00004 6/28/2018 Primary	IMW-03-00004 6/28/2018 Primary	IMW-03-00004 6/29/2018 Primary	IMW-03-00004 4/23/2019 Primary	IMW-03-00004 4/23/2019 Primary	IMW-03-00007 8/8/1996 Primary	9/23/2004 Primary	IMW-03-00007 12/1/2004 Primary	IMW-03-00008D 12/10/1999 Primary	IMW-03-00008D 10/19/2000 Primary	IMW-03-00008D 7/12/2001 Primary	7/10/2002 Primary	IMW-03-00008D 6/23/2003 Primary	IMW-03-00008D 11/10/2004 Primary	IMW-03-00008D 4/19/2005 Primary
Inorganic Compounds (ug/L) Antimony, Total Arsenic, Dissolved	:	:	:	-	:	:	:	•	:	:	:	:	:	:	:	:	:	-	:	:	:	:	-	
Arsenic, Total Barium, Total Beryllium, Total																							ND (10) 219 ND (5)	2.8 J ^(E) 200 ND (5)
Cadmium, Total Chromium, Total							-	-	-	-		-					-		:		:		ND (10)	ND (10)
Cobalt, Total Copper, Total Cyanide			:														:			:			ND (25) ND (10)	ND (25) ND (10)
Iron, Total Lead, Dissolved Lead, Total	:	- 1	:	:	:	:	:	-	:	-	:	:		:	:	:	:	-	:	:	:		2860 ^[BC]	2240 ^[BC]
Magnesium, Total Manganese, Total	:		:	:	-	:		-	- :	-	- 1	- :			:			:	:	:	:		81000 130 ^(B) ND (0.2)	65000 105 ⁽⁸⁾ ND (0.2)
Mercury, Total Nickel, Total Selenium, Total Silver, Total	:		:		:				:			:					:	-	:		:		ND (0.2) 3.7 J	ND (40)
Silver, Total Sodium, Total Thallium, Total Tin. Total	:		:	:		:		:		-							:	:	:	:	:		1070000 - ND (100)	1060000 - ND (100)
Vanadium, Total Zinc, Total	:		:	:	:	:		:	:	:		:					:	:	:	:	:		ND (20)	ND (20)
Other (ug/L) Ammonia (as N) Chloride								-		-									:				8500 ^[C] 2290000	7500 ^(C) 2080000
Hardness as CaCO3 pH (lab) (pH units) Sulfate	7.7															8.7							200000	198000
Sulfide Total Dissolved Solids (TDS)	:																-		:		:		ND (1000) 4000000	ND (1000) 3700000
Total phenois Total Suspended Solids (TSS) PCBs (ug/L)	:	- :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
4,4'-DDD 4,4'-DDT alpha-BHC	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:
Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1260 (PCB-1260)	:		:	:	- :	:	-	-	- :	-	- :	- :		-	:	-	:	:	:	:	:		:	:
delta-BHC Endosulfan Endrin	:	- :	:	:	- :	:	:	- :	- :	- :	- :	- :			- :		:	-	-	:	-		-	:
Endrin ketone gamma-BHC (Lindane) Heptachlor	:		:	:		:	:	:	- :	:		- :	- 1	:	- :	:	:	:	:	:	:	- :	:	-
Heptachlor epoxide Semi-Volatile Organic Compounds (ug/L) 1,2,4,5-Tetrachlorobenzene			ND (10)	- ND (10)	- ND (10)	ND (10)	ND (10)	ND (10)									ND (10)					ND (10)		
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Diphenylhydrazine	ND (10) ND (10)	ND (10) ND (10)	- (,		- (,			-	:	:	:	:		:	:	ND (10) ND (10)	- (,	:	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)
1,3,5-Trinitrobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene	ND (50) ND (10)	ND (50) - ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	:	:	:	:	- :	:	:	ND (50) - ND (10)	ND (10)	ND (10)	:	:	:		ND (50) - ND (10)	ND (50) - ND (10)
1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine	ND (10)	ND (10)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	:	:	:	:	:	:	:	ND (10)	ND (50)	:	ND (10)	ND (10)	ND (10)	ND (10) ND (10)	ND (10)	ND (10)
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ND (50) ND (10)	ND (50) ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	:	:	:	:	- 1	:	:	ND (50) ND (10)	ND (10)	-	ND (10) - ND (20)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (50) ND (10)	ND (50) ND (10)
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	-		ND (10) ND (10)	ND (10) ND (10) -	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	:	:	:	:	:	-	:		ND (10) ND (10) ND (10)	ND (10) ND (10)	- ND (10)	ND (10) ND (10)	ND (10) ND (10)		-	-
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichlorophenol	ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)	:	:	:	:	:	:	:	:	- :	:		-	:	ND (50) ND (10) ND (10)	:	:	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)
2,6-Dinitrotoluene 2-Acetylaminofluorene 2-Chloronaphthalene 2-Chlorophenol	ND (10) ND (100) - ND (10)	ND (10) ND (100) - ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	:	-		:		-	- :	ND (10) ND (100) - ND (10)	ND (10)	- - ND (10)	ND (10) ND (10)	ND (10) - -	ND (10)	ND (100)	ND (10) ND (100) - ND (10)	ND (10) ND (100) - ND (10)
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Naphthylamine	ND (10) ND (10) ND (10)	ND (10) ND (10) - ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)				:				ND (10) ND (10) - ND (10)	ND (10)	ND (10) ND (10) ND (10)	:	ND (10)	ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) - ND (10)	ND (10) ND (10) - ND (10)
2-Naphthylamine 2-Nitroaniline 2-Nitrophenol 2-Picoline	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	:	-	:	:				ND (10) ND (50)	ND (10) ND (20)	ND (5)	ND (50)	ND (10)	ND (10)	ND (10) ND (50) - ND (20)	ND (10) ND (50)	ND (10) ND (50)
2-Picoline 2-Toluidine 3,3-Dichlorobenzidine 3,3-Dimethylbenzidine	ND (50) ND (50)	ND (50) ND (50)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)								ND (50) ND (50)	ND (20) ND (20)	ND (50)		ND (50)	ND (50)	ND (20) ND (20) ND (50)	ND (50) ND (50)	ND (50) ND (50)
3-Methylcholanthrene 3-Methylphenol 3-Nitroaniline	ND (10)	ND (10)	ND (20) ND (50)	ND (20) ND (50)	ND (20) 50 R	ND (20) ND (50)	ND (20) ND (50) J	ND (20) ND (50)								ND (10)	ND (20) ND (50)		- ND (50)	ND (50)	- ND (50)	ND (50)	ND (10)	ND (10)
4,6-Dinitro-2-methylphenol 4-Aminobiphenyl 4-Bromophenyl phenyl ether	ND (50) ND (50) ND (10)	ND (50) ND (50) ND (10)	ND (10)	ND (10)	- ND (10)	ND (10)	ND (10)	ND (10)								ND (50) ND (50) ND (10)	-	ND (50) ND (10)				ND (50) ND (10)	ND (50) ND (50) ND (10)	ND (50) ND (50) ND (10)
4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether		-	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	:	:	:	:		:	:		ND (10) ND (10) ND (10)	ND (10) ND (20) ND (10)	:	:	:	ND (10) ND (10)		-
4-Methylphenol 4-Nitroaniline 4-Nitrophenol	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	:	:	:	:	- :	:	:	ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (50)	- ND (50)	- ND (50)	ND (50)	ND (50)	ND (50)
4-Nitroquinoline-N-oxide 5-Nitro-2-Toluidine 7,12-Dimethylbenz(a)anthracene	:	- 1	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20) J	ND (20) ND (20)	:	:	- :	- :		:	:	:	ND (20) ND (20)	:	:	:	:	ND (20) ND (20)	:	-
a,a-Dimethylphenethylamine Acenaphthene Acenaphthylene	- ND (10)	- ND (10)	ND (50) J ND (10)	ND (50) J ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) J ND (10)	ND (50) ND (10)	:	:	- :	:			:	- ND (10)	ND (50) ND (10)	- ND (10)	ND (10)	ND (10)	ND (10)	- ND (10)	- ND (10)	- ND (10)
Acetophenone Aniline Anthracene	:		2.2 J ND (10) ND (10)	0.29 J ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	2.1 J ND (10) ND (10)	ND (10) ND (10) ND (10)	- :	:		- :	- 1	:	- :	:	ND (10) ND (10) ND (10)	- ND (10)	:	:	:	ND (10) ND (10) ND (10)	:	-
Aramite Benzidine Benzo(a)anthracene	ND (10)	ND (10)	:	:	- :	:		:	- :	:		- :				ND (10)	:		ND (80) ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND (10)	ND (10) - -	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	- :			- :			:	ND (10) - -	ND (10) ND (10) ND (10)	ND (10) - -	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)	ND (10)	ND (10)
Benzoic acid Benzyl Alcohol bis(2-Chloroethoxy)methane	ND (10) ND (10)	ND (10) ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								ND (10) ND (10)	ND (10)	ND (50) ND (10)	ND (20)	-	ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate** Butyl benzylphthalate		-	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) 11 JB ^(AC) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)								-	ND (10) ND (10) ND (10)		ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10)		-
Carbazole Chlorobenzilate Chrysene			ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10) ND (10)									ND (10) ND (10) ND (10)		ND (10)	ND (10)	ND (10) - ND (10)			
Diallate Dibenz(a,h)anthracene Dibenzofuran	ND (10)	ND (10) - -	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	:	:	:	:	:	:	:	ND (10)	ND (10) ND (10)	- ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10) - -	ND (10) - -
Diethyl phthalate Dimethoate Dimethyl phthalate	ND (10) - ND (10)	ND (10) - ND (10)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	:	:	:	:		:	:	ND (10) - ND (10)	ND (20)	ND (10)	- ND (10)	- ND (10)	- ND (10)	ND (10) ND (20) ND (10)	ND (10) - ND (10)	ND (10) - ND (10)
Di-n-butyliphthalate Di-n-octyl phthalate Dinoseb	ND (10) ND (20)	ND (10) ND (20)	ND (10) - -	0.68 JB -	0.68 JB - -	1.1 JB :	2.2 JB -	1.3 J - -	:	:	- :	:			:	ND (10) ND (20)	ND (10) -	ND (10)	ND (10)	ND (10)	ND (10)	- ND (20)	ND (10) 20 R	ND (10) ND (20)
Diphenylamine Disulfoton Ethyl methanesulfonate	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)	:	:	- :	:	:	:	:	:	- :	:			:	ND (10) ND (50) ND (10)	:	:	:	:	:	ND (10) ND (50)	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)
Famphur Fluoranthene Fluorene	ND (10)	ND (10)	10 R ND (10)	10 R ND (10)	ND (10) J ND (10)	10 R ND (10)	10 R ND (10)	ND (10)	:	:	- :	:		- :	:	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	ND (50) J ND (10)	ND (50) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)							:	50 R ND (10)	ND (10) ND (10)	ND (10)	ND (10) - ND (10) ND (10)	ND (10) ND (10) ND (50) ND (10)	ND (10) ND (10) ND (50) ND (10)	ND (10) - ND (50)	50 R ND (10)	ND (50) ND (10)
Hexachloropropene Indeno(1,2,3-cd)pyrene Isophorone	ND (100) ND (100)	ND (100) ND (100)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								ND (100) ND (100)	ND (10)	ND (10) ND (10)	-	ND (10)	ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (100)
Isosafrole Methapyrilene Methyl methanesulfonate	:		ND (50) ND (10)	ND (50) ND (50) ND (10)	ND (10) - ND (50) ND (10)	ND (10) - ND (50) ND (10)	ND (50) ND (50) ND (10)	ND (50) ND (50) ND (10)	- :	:		- :					ND (10) - ND (50) ND (10)	ND (10)	:	:	:	ND (10)	:	:
Naphthalene Nitrobenzene N-Nitrosodiethylamine	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								ND (10) ND (10)	ND (10)	ND (10)	ND (10)			ND (10)	ND (10) ND (10)	ND (10) ND (10)
N-Nitrosodimethylamine N-Nitrosodi-N-butylamine N-Nitrosodi-n-propylamine	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	:	:	- :	:	- :	:	:	ND (10) ND (10)	ND (10)	- ND (10)	ND (10)	:	:	- (,	ND (10) ND (10)	ND (10) ND (10)
N-Nitrosodiphenylamine N-Nitrosomethylethylamine N-Nitrosomorpholine	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	:	:	:	:	- :	:	:	ND (10) ND (10) ND (10)	:	ND (10)	:	:	:	ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)
N-Nitrosopiperidine N-Nitrosopyrrolidine o,o,o-Triethylphosphorothioate	-	-	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	:	:	:	:	:	:	:	-	ND (10) ND (10) ND (50)	:	:	:	:	ND (10)	-	:
P-DIMETHYLAMINOAZOBENZENE Pentachlorobenzene Pentachloroethane	:	:	ND (20) ND (10)	ND (20) ND (10)	ND (20) ND (10)	ND (20) ND (10)	ND (20) ND (10)	ND (20) ND (10)	:	:	:	:	:	:	:	:	ND (20) ND (10)	:	:	:	:	ND (20) ND (10)	:	:
Pentachloronitrobenzene Pentachlorophenol Phenacetin	ND (50) ND (10)	ND (50) ND (10)	- ND (20)	- ND (20)	- ND (20)	- ND (20)	- ND (20)	- ND (20)	:	:	:	:	:	:	:	ND (50) ND (10)	- ND (20)		ND (30)	:	:	ND (50) ND (10) ND (20)	ND (50) ND (10)	ND (50) ND (10)
Phenanthrene Phenol Phorate	ND (10) ND (10)	ND (10) ND (10)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	:	-	:	:	:	-	:	ND (10) ND (10)	ND (50)	ND (10) ND (10)	24	7.3 J	ND (10)	ND (10) ND (10)	ND (10) 1.6 J	ND (10) 0.57 J
p-Phenylenediamine Pronamide Pyrene	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	:	:	:	:	- :	:	:	ND (10)	ND (20)	- ND (10)	:	:	:	ND (100) - ND (10)	ND (10)	ND (10)
Pyridine Safrole Sulfotep	20 R ND (20)	ND (20) J ND (20)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	:	:	- :	:		-	:	20 R ND (20)	ND (50)	:	:	:	:		ND (20) ND (20)	ND (20) ND (20)
Thionazin Volatile Organic Compounds (ug/L) 1,1,1,2-Tetrachloroethane	ND (50)	ND (50)	ND (1)	ND (1)					:	:	:	:	-	:		ND (50)	ND (1)					ND (50) ND (1)	ND (50)	ND (50)
1,1,2-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	:	- 1	(-/	- (-)	:	:	:	:	ND -	ND -	ND -	ND -	ND -	ND -	:	-	ND (1) ND (1) ND (1)	ND (5) ND (5)	ND (5)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	:	:
1,1-Dichloroethane 1,1-Dichloroethene 1,2-3-Trichloropropane	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND -	ND -	ND -	ND -	ND -	ND -	:	ND (1) ND (1)	ND (1)	ND (5)	ND (5)	ND (1)	ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide)			ND (1)	ND (1)	- :	:			ND -	ND -	ND -	ND -	ND -	ND -	:		ND (2) ND (1)	:	:	:	:	ND (1)	-	
1,2-Dichloroethane 1,2-Dichloroethene (total) 1,2-Dichloropropane	ND (1)	ND (1)	: '	-11	ND (1)	ND (1)	ND (1)	ND (1)	ND -	ND -	ND -	ND -	ND -	ND -	:	ND (1)	ND (1)	- ND (5)	ND (5)	ND (1) ND (1)	ND (1)		ND (1)	ND (1)
1,4-Dioxane 2-Butanone (Methyl Ethyl Ketone) 2-Chloroethyl vinyl ether	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	10 R	ND (10)	:	:	:	:	:	-	:	ND (10)	-	ND (50)	ND (10)	:	-	ND (10)	ND (10)	ND (10)
2-Hexanone 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone	ND (10) ND (10) 0.98 JB	ND (10) ND (10) ND (10)	:	:	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) J ND (10) 10 R	ND (10) ND (10) 3.6 JB	:	:		:	:	-	:	ND (10) ND (10) 0.92 JB	:	ND (10)	ND (10) ND (10)	- - 0.77 J	- ND (10)	:	ND (10) ND (10) 1.4 JB	ND (10) ND (10) ND (10)
Acetonitrile Acrolein Acrylonitrile	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20)	ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	:	:	:	:	:	:	:	ND (20) ND (20) ND (20)		- '	:	:	- 1		ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)
Allyl chloride Benzene Bromodichloromethane	ND (1) ND (1)	ND (1) ND (1)	ND (2) - ND (1)	ND (2) - ND (1)	5.4 ND (1)	0.49 J ND (1)	0.79 J ND (1)	3.5 ND (1)	19000 ^[ABCE]	3400 ^[ABCE]	3200 ^[ABCE]	3300 ^[ABCE]	3100 ^[ABCE]	3300 ^[ABCE]	260 ^[CE]	5.9 ND (1)	ND (2) 6.2	ND (5)	- ND (5)	ND (1)	ND (1)	ND (2)	ND (1) ND (1)	ND (1) ND (1)
Bromoform Bromomethane (Methyl Bromide) Carbon disulfide	ND (1) J 1.7	ND (1) ND (1)	ND (1) J ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) J ND (1) J	ND (1) ND (1)	ND (1) ND (1)	ND	ND	ND	ND	- ND	- ND	:	ND (1) J 1.1	ND (1)	ND (5) ND (10)	ND (5)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND (1) 0.42 J	ND (1) J 0.37 J
Carbon tetrachloride Chlorobenzene Chloroethane	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1) J	ND (1) 1 R	ND (1) ND (1) ND (1)	ND (1) ND (1)	:	-					:	ND (1) ND (1)	ND (1)	ND (5) ND (10)	ND (5)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND (1) ND (1)	ND (1) ND (1)
Chloroform (Trichloromethane) Chloromethane (Methyl Chloride) Chloroprene	ND (2)	ND (2)	ND (1)	ND (1)	ND (2)	ND (2)	ND (2)	ND (2)	:	:	:	:	:	:	:	ND (2)	ND (1) ND (1)	12	ND (5) ND (10)	ND (1)	ND (1)	ND (1) ND (1) ND (2)	ND (1) ND (2)	ND (1) ND (2)
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane	:		ND (1) ND (1)	ND (1) ND (1)	- :	:	:	:	ND -	ND -	ND -	ND -	ND -	ND -	:		ND (1) ND (1)	ND (5)	ND (5)	ND (1)	:	ND (1)	-	-
Dibromochloromethane Dibromomethane Dichlorodifluoromethane (CFC-12)	ND (1) ND (1) J	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) ND (1) J	ND (1) J ND (1)	ND (1) ND (1)	:	:	:	:	:	:	:	ND (1) ND (1) J	ND (1)	:	ND (5)	ND (1)	ND (1)	ND (1) ND (1)	ND (1) ND (1) J	ND (1) ND (1) J
Ethyl methacrylate Ethylbenzene Iodomethane	ND (1) 3 - ND (1)	ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1) J	ND (1)	ND (1) 3 - - ND (1)	ND (1) - ND (1)	ND (1)	ND	ND	ND -	ND -	ND	ND	ND (8.2)	ND (1) 3 - ND (1)	ND (1) ND (1)	-	ND (5)	ND (1)	:	ND (1)	ND (1) 3 - ND (1)	1 R
Isobutyl alcohol Isopropylbenzene (Cumene) Methyl Acetate	(1)	(1)	-	-	(1)	(1)	(1)	(1)		-				-		(1)		-				ND (50)	(1)	
Methyl acrylonitrile Methyl cyclohexane Methyl methacrylate	ND (2)	ND (2)	ND (2) ND (2) J	ND (2)	ND (2)	- - ND (2) J	ND (2)	ND (2)		-						ND (2)	ND (2)	-		-		ND (2)	ND (2)	ND (2)
Methyl Tert Butyl Ether Methylene chloride	·•• (£)	- (2)	· • · (e) J	···· (e)	· · · (£)	. + (z) J	(2)	· · · (£)	Ė	-					ND (47	ND (2)	ND (1)	ND (5)	Ė	ND (1)	ND (1)	ND (2) ND (1)	· ··· (£)	- (2)
Naphthalene Propionitrile (Ethyl cyanide) Styrene	ND (1)	ND (1)	4 R	4 R	ND (1)	ND (1)	ND (1)	ND (1)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND (17)	ND (1)	ND (4)	ND (5)	:	:	ND (1)	ND (4)	ND (1)	ND (1) J
Tetrachloroethene Toluene trans-1,2-Dichloroethene	ND (0.5)	ND (0.5)	ND (1) ND (1)	ND (1) 0.73 J	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND ND -	ND ND	ND ND -	ND ND -	ND ND -	ND ND -	ND (16) - -	ND (0.5)	ND (1) ND (1)	ND (5) ND (5)	ND (5)	ND (1)	ND (1)	ND (1)	ND (0.5)	- ND (0.5)
trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene Trichloroethene	ND (1) J	ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND	ND	- ND	- ND	- ND	- ND	:	ND (1) J ND (1)	ND (1)	ND (5)	ND (5)	:	ND (1)	ND (1) ND (1)	ND (1) J ND (1)	ND (1)
Trichlorofluoromethane (CFC-11) Trifluorotrichloroethane (Freon 113) Vinyl acetate	1		ND (2)	ND (2) J		-		-	:	:	- :	:		:	:	-	ND (1)	- ND (10)		:	:	ND (1) ND (2)	-	
Vinyl chloride Xylene (total)	ND (1)	ND (1)		-	ND (1)	ND (1)	ND (1)	ND (1)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND (1)	ND (1)		ND (10) ND (5)	ND (1)	ND (1)	ND (1) ND (1)	ND (1)	ND (1)
Notes and abbreviations on last page						-						-						-		-		-		

				D IMW-03-00008E																			
	10/12/2005 Primary	7/12/2006 Primary	6/18/2007 Primary	11/27/2007 Primary	9/30/2008 Primary	8/11/2009 Primary	10/12/2010 Primary	9/20/2011 Primary	10/1/2012 Primary	9/23/2013 Primary	8/25/2014 Primary	9/1/2015 Primary	9/20/2016 Primary	10/3/2017 Primary	9/24/2018 Primary	10/21/1998 Primary	11/19/1999 Primary	10/19/2000 Primary	7/10/2001 Primary	7/10/2002 Primary	6/23/2003 Primary	11/10/2004 Primary	4/19/2005 Primary
Inorganic Compounds (ug/L) Antimony, Total Arsenic, Dissolved Arsenic, Total	:	:	- - ND (10)	- - ND (10)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ND (60)	ND (60)
Barium, Total Beryllium, Total Cadmlum, Total Chromium, Total	:	:	0.48 JB ND (10)	ND (5) - ND (10)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ND (200) - 0.29 JB	ND (200) ND (5)
Cobalt, Total Copper, Total Cyanide	:	-	ND (25) ND (10)	ND (25)				-	-	-	-						:					ND (50) - ND (10)	ND (50) - ND (10)
Iron, Total Lead, Dissolved Lead, Total Magnesium, Total	:	:	1270 [BC] - - - 36500	1310 ^(BC) - - 36100	:			:	:	:	:			:			:					607 ^[0] - 14300	1230 ⁽⁸⁰⁾ - 19000
Manganese, Total Mercury, Total Nickel, Total Selenium. Total	:	:	76.1 ^[8] ND (0.2) ND (40)	63.3 ^(b) ND (0.2) J ND (40)			:	:	-	-	:			:	Ė	:	:					110 ^(a) ND (0.2) ND (40) ND (5)	174 ^(b) ND (0.2) ND (40) ND (5)
Silver, Total Sodium, Total Thallium, Total Tin, Total	:	:	752000 - ND (100)	826000 - ND (100)	:	-	:	:	-	:	:	:	:	:	-	:	:	:	:	-	:	87900 - -	170000
Vanadum, Total Zinc, Total Other (ug/L) Ammonia (as N)	:	:	ND (20)	ND (20)	:	-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	0.87 J - 200	ND (50) - 200
Chloride Hardness as CaCO3 pH (lab) (pH units) Sulfate			252000 - 32200	1110000						:												91900 250000 - 65800	176000 - - 65700
Sulfide Total Dissolved Solids (TDS) Total phenols	:	:	1500 2200000	ND (1000) 2100000			:	:	:	:	:			:		:	:		:			ND (1000) - - ND (4000)	ND (1000) 700000
Total Suspended Solids (TSS) PCBs (ug/L) 4,4-DDD 4,4-DDT	:	-	:	:	:	:	:	:	:		:	:	:	:	:	:		:	:	:	:	ND (4000) - -	ND (4000) - -
alpha-BHC Arcclor-1016 (PCB-1016) Arcclor-1221 (PCB-1221) Arcclor-1260 (PCB-1260)	:	:	:	:	:	-	:	:	:	:	:	:	-	:	-	:	:	:	:		:	:	:
delta-BHC Endosulfan Endrin Endrin ketone gamma-BHC (Lindane)	:	-				Ė		:	:	:							:					-	Ė
Heptachlor Heptachlor epoxide Semi-Volatile Organic Compounds (ug/L)	:	-			:		:	:	:	:	:			:	Ē	:	:	:	:		:	-	:
1,2,4,5-Tetrachlorobenzene 1,2,4-Tritchlorobenzene 1,2-Dichlorobenzene 1,2-Diphenylhydrazine	ND (10) - -	ND (10) - - -	ND (10) ND (10)	ND (10) ND (10)	ND (10) - - -	ND (10) - - -	ND (10) - -	ND (10)	ND (10) - -	ND (10) ND (10)	ND (10) - - -	ND (10) - -	ND (10) ND (10)	:	:	:	:	:	:	ND (10) ND (10)	ND (10) - - -	ND (10) ND (10)	ND (10) J ND (10) J
1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoguinone	ND (10) - ND (50)	ND (10) - ND (50)	50 R ND (10) ND (10)	ND (50) ND (10) ND (10)	ND (10)	ND (10) - - ND (50)	ND (10) - - ND (50)	ND (10) ND (10) ND (50)	ND (10) - ND (10) ND (50)	ND (50) ND (10) ND (10)	ND (10) - ND (10) ND (50)	ND (10) - ND (10) ND (50)	ND (50) ND (10)				ND (10)	ND (10)	ND (10)	ND (10)	ND (10) - - ND (50)	ND (50) ND (10) ND (10)	ND (50) J ND (10) J ND (10) J
Naphthylamine 2,2-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ND (10)	ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (10)	ND (10)	ND (10)	ND (10) ND (10) ND (10) J	ND (10)	ND (10) ND (50) ND (10)	ND (10)	ND (10)	ND (50) ND (10)							ND (10) ND (10)	ND (50)	ND (50) ND (10)	ND (50) J ND (10) J
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (50)	ND (50)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) J	ND (10) ND (10)	ND (50)	ND (10) ND (10)	ND (10) ND (10)	- ND (10) ND (50) J	:	:	:	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10) ND (50)	ND (10) ND (10) ND (10)	ND (50)	- - ND (50) J
2,4-Dinitrotoluene 2,6-Dichlorophenol 2,6-Dinitrotoluene 2-Acetylaminofluorene 2-Chloronaphthalene	- - - - ND (10)	ND (10)	ND (10) ND (10) ND (10) ND (100)	ND (10) ND (10) ND (10) ND (100)	- - - ND (10)	- - - ND (10)	- - - ND (10)	-	ND (10)	ND (10) ND (10) ND (10) ND (100)	- - - ND (10)	- - - - ND (10)	ND (10) ND (10) ND (10) ND (100)			:			- - - ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10) ND (10) ND (100)	ND (10) J ND (10) J ND (10) J ND (100) J
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Naphthylamine	ND (10) - ND (10)	ND (10) - - ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) 10 R	ND (10) - ND (10)	ND (10) - - ND (10)	ND (10) - ND (10)	ND (10) ND (10) J ND (10)	ND (10) - - ND (10)	ND (10) ND (10) ND (10)	ND (10) - - ND (10)	ND (10) - ND (10)	ND (10) ND (10) ND (10)				ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) - ND (10) -	ND (10) ND (10) ND (10)	ND (10) J ND (10) J ND (10) J
2-Nitroaniline 2-Nitrophenol 2-Picoline 2-Toluidine	ND (10) ND (20) ND (20)	ND (10) ND (20) ND (20)	ND (50)	ND (50) - -	ND (10) ND (20) ND (20)	ND (10) ND (20) ND (20)	ND (10) ND (20) ND (20)	ND (50) ND (10) J - ND (20)	ND (10) ND (20) ND (20)	ND (50) ND (20)	ND (10) ND (20) ND (20)	ND (10) ND (20) ND (20)	ND (50)	:	:	:	ND (5)	ND (5)	ND (50) - -	ND (10)	ND (10) ND (20)	ND (50) - -	ND (50) J - -
3.3-Dichlorobenzidine 3.3-Dienstrylbenzidine 3-Methylcholanthrene 3-Methylphenol 3-Nitroantline	ND (20) ND (50)	ND (20) ND (50)	ND (50) ND (50) - ND (10)	ND (50) ND (50) ND (10)	ND (20) ND (50)	ND (20) ND (50)	ND (20) ND (50)	ND (50) ND (50) ND (20) ND (50)	ND (20) ND (50)	ND (50) ND (50)	ND (20) ND (50)	ND (20) ND (50)	ND (50) ND (50)				ND (50)	ND (50)	:	ND (50) - - - ND (50)	ND (50) ND (20) ND (10) ND (50)	ND (50) ND (50) ND (10)	ND (50) J ND (50) J ND (10) J
4,6-Dinitro-2-methylphenol 4-Aminobiphenyl 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	- - ND (10)	ND (10)	ND (50) ND (50) ND (10)	ND (50) ND (50) ND (10)	- - ND (10)	- - ND (10)	- - ND (10)	ND (50) J ND (50) ND (50) ND (10) ND (10) J	ND (10) ND (10)	ND (50) ND (50) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (50) ND (50)				ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)	ND (50) - ND (10) ND (10)	-		ND (50) ND (50) ND (10)	ND (50) J ND (50) J ND (10) J
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	- - ND (50)	- - ND (50)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) J ND (50)	ND (10) ND (50)	ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (10)	:	:	:	ND (20) ND (10) ND (10)	ND (20) ND (10) ND (10)	ND (10) ND (10) ND (10) ND (50)		ND (10) ND (10)	- - ND (50)	- - ND (50) J
4-Nitrophenol 4-Nitroquinoline-N-oxide 5-Nitro-2-Toluidine 7.12-Dimethyllbenz(a)anthracene	ND (50) - ND (20) ND (20)	ND (50) - ND (20) ND (20)	:	:	ND (50) - ND (20) ND (20)	ND (50) - ND (20) ND (20)	ND (50) - ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	-	ND (20) ND (20)	ND (20) ND (20)	ND (50) - -	:	-	:	ND (50) - -	ND (50) - -	:	ND (50) - -	ND (50) ND (100) ND (20)	-	:
a,a-Dimethylphenethylamine Acenaphthylene Acenaphthylene Acetophenone Aniline	ND (50) ND (10) - ND (10) ND (10)	ND (50) ND (10) - 0.56 J ND (10)	ND (10)	ND (10)	ND (50) ND (10) - ND (10) ND (10)	ND (50) ND (10) - 0.35 J ND (10)	ND (50) ND (10) - ND (10) ND (10)	ND (10) 0.38 J ND (10)	ND (10) ND (10) ND (10) ND (10)	ND (10)	ND (50) J ND (10) - ND (10) ND (10)	ND (50) ND (10) - 0.56 J ND (10)	ND (10) ND (10)				ND (10)	ND (10)	ND (10)	ND (10)	ND (50) ND (10) ND (10)	ND (10)	ND (10) J
Anthracene Aramite Benzidine Benzo(a)anthracene	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)				ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10) J
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g, h,i)perylene Benzo(k)fluoranthene Benzoic acid	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) - - -	ND (10) - - -	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) - - -	ND (10) ND (10) ND (10)	ND (10) ND (10) J ND (10)	ND (10) - - -	:	:	:	ND (10)	ND (10)	ND (10) - - -	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) - - -	ND (10) J - -			
Benzyl Alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethy)ether bis(2-Ethylexv)lothlalate**	ND (10) J	ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10)	ND (10) J ND (10)	ND (10) ND (10) 5.1 JB ^[ACI]	ND (10) ND (10)	ND (10) ND (10) 5 JB ^[ACI]	ND (10) - ND (10) 1.9 JB ^[C]	ND (10) ND (10)				ND (50) ND (10)	ND (50) ND (10)	ND (10)	ND (10)	ND (10)	ND (10) ND (10)	ND (10) J ND (10) J
Butyl berzylphthalate Carbazole Chlorobenzilate Chrysene	ND (10) ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)			ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)		ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)							ND (20)	ND (10) 	ND (10) ND (10) ND (10)					
Diallate Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate	ND (10) ND (10)	ND (10) ND (10)	10 R - - ND (10)	ND (10) - - ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) - - ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) - - ND (10)	:	Ė	:	ND (10) ND (10)	ND (10) ND (10)	- ND (10) ND (10)	ND (10)	ND (10) ND (10)	ND (10) - - ND (10)	ND (10) J - - ND (10) J
Dimethoate Dimethyl phthalate Din-butylphthalate Din-octyl phthalate Dinoseb	ND (20) ND (10)	ND (20) ND (10)	ND (10) ND (10) 20 R	ND (10) ND (10) ND (20)	ND (20) ND (10)	ND (20) ND (10)	ND (20) ND (10)	ND (20) - ND (10) ND (10)	ND (20) - 0.81 J	ND (10) ND (10) ND (20)	ND (20) ND (10)	ND (20) - 1.1 JB	ND (10) ND (10) ND (10)				- - ND (10)	ND (10)	- - ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10) 20 R	ND (10) J ND (10) J ND (20) J
Diphenylamine Disulfoton Ethyl methanesulfonate Famphur	ND (10)	ND (10)	ND (10) ND (50) ND (10)	ND (20) ND (10) ND (50) ND (10)	- - - ND (10)	- - 10 R	- - 10 R	:	- - - 10 R	ND (10) ND (50) ND (10)	- - - 10 R	- - 10 R	ND (20) ND (10) ND (50) ND (10)				:				ND (10) ND (10)	ND (10) ND (50) ND (10)	ND (10) J ND (50) J ND (10) J
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) - - -	ND (10) - - -	ND (10) ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)	ND (10) ND (10) ND (10) ND (10)	ND (10) - -	ND (10) ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) - - -	:		:	ND (10) - - ND (10)	ND (10) - - ND (10)	ND (10) - - -	ND (10) ND (10) ND (10)	ND (10)	ND (10) - - -	ND (10) J - - -
Hexachlorocyclopentadiene Hexachloroethane Hexachloropropene Indeno(1,2,3-cd)pyrene	- - - ND (10)	ND (10)	50 R ND (10) ND (100) ND (10)	50 R ND (10) ND (100) ND (10)	- - - ND (10)	- - -		- - ND (10)	- - - ND (10)	50 R ND (10) ND (100) ND (10)	- - - ND (10)	- - - ND (10)	ND (50) ND (10) ND (100) ND (10)	:	-	:	ND (10)	ND (10)	ND (10)	ND (50) ND (10)	ND (10) - ND (10)	50 R ND (10) ND (100) ND (10)	ND (50) J ND (10) J ND (100) J ND (10) J
Isophorone Isosafrole Methapyrillene Methyl methanesulfonate Naphthalene	ND (10) ND (50) ND (10) ND (10)	ND (10) - ND (50) ND (10) ND (10)			ND (10) ND (50) ND (10) ND (10)	ND (10) - ND (50) ND (10) ND (10)	ND (10) - ND (50) ND (10) ND (10)	ND (10) - ND (10)	ND (10) - ND (50) ND (10) ND (10)	:	ND (10) - ND (50) ND (10) ND (10)	ND (10) ND (50) ND (10) ND (10)					ND (10)	ND (10) - - -	ND (10) - - - ND (10)		ND (10) ND (20) ND (50) - ND (10)		
Nitrobenzene N-Nitrosodiethylamine N-Nitrosodimethylamine N-Nitrosodi-N-butylamine	ND (10)	ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10) ND (10) ND (10)	ND (10)	ND (10)	ND (10) ND (10) ND (10) J				ND (10)	ND (10)	ND (10) - - -		ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) J ND (10) J ND (10) J
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine N-Nitrosomethylethylamine N-Nitrosomorpholine N-Nitrosopioeridine	- - - ND (10)	- - - ND (10)	ND (10) ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10) ND (10)	- - - - ND (10)	- - - ND (10)	- - - ND (10)	:	ND (10)	ND (10) ND (10) ND (10) ND (10)	ND (10)	ND (10)	ND (10) ND (10) ND (10)	:	-	:	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	-	ND (10) - - ND (10) ND (10)	ND (10) ND (10) ND (10) ND (10)	ND (10) J ND (10) J ND (10) J ND (10) J
N-Ntrosopiperidine N-Ntrosopyreridine o,o,o-Triethylphosphorothioate P-DIMETHYL-MINOAZOBENZENE Pentachlyr-bayzene	ND (10) ND (10) ND (50) ND (20) ND (10)	ND (10) ND (10) ND (50) ND (20) ND (10)			ND (10) ND (10) ND (50) ND (20) ND (10)	ND (10) ND (10) ND (50) ND (20) ND (10)	ND (10) ND (10) ND (50) ND (20) ND (10)	ND (50) ND (20) ND (10)	ND (10) ND (50) ND (20) ND (10)		ND (10) ND (50) ND (20) ND (10)	ND (10) ND (50) ND (20) ND (10)	ND (10) - - -								ND (10) ND (10) ND (50) ND (20)		
Pentachloroethane Pentachloronitrobenzene Pentachlorophenol Phenacetin	ND (20)	ND (20)	ND (50) ND (10)	ND (50) ND (10)	ND (20)	ND (20)	ND (20)	ND (10) J ND (20)	ND (20)	ND (50) ND (10)	ND (20)	ND (20)	ND (50) ND (10)	:	Ė	:	:	:	ND (10)		ND (50) - - -	ND (50) ND (10)	ND (50) J ND (10) J
Phenanthrene Phenol Phorate p-Phenylenediamine	ND (10) ND (50) ND (20)	ND (10) ND (50)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) - -	ND (50)	ND (50)	ND (10) ND (10)	:		:	ND (10) ND (10) - -	ND (10) ND (10)	ND (10) ND (10)	:	ND (10) ND (50)	ND (10) ND (10) - -	ND (10) J ND (10) J - -
Pronamide Pyrene Pyridine Safrole Suffotep	ND (20)	ND (20) - - ND (50)	ND (10) ND (20) ND (20)	ND (10) ND (20) ND (20)	ND (20) - - - ND (50)	ND (20) - - - ND (50)	ND (20) - - - ND (50)	ND (20) - ND (20) ND (20) ND (50)	ND (20) - - - ND (50)	ND (10) ND (20) ND (20)	ND (20) - - - ND (50)	ND (20) - - - ND (50)	ND (10) ND (20) ND (20)				ND (10)	ND (10)	ND (10)		ND (20) - ND (20) - ND (50)	ND (10) ND (20) ND (20)	ND (10) J ND (20) J ND (20) J
Volatile Organic Compounds (ug/L) 1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND (1) ND (1)	ND (1) ND (1)	ND (50)	ND (50)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	:	:	ND (50)	: "	-	ND (50) ND (1) ND (1)	: - ND	: ND	:	:	:	ND (1)	:	-	ND (50)	ND (50) J
1,1,2-Tietracolorestane 1,1,2-Tietrachloroethane 1,1,2-Tichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	ND (1) ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1) ND (1)	ND (1)	ND (1)	ND (1) ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1) ND (1)	ND (1) J ND (1) J ND (1) ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) ND (1) ND (1) ND (1)	- ND	- ND		ND (5) ND (5) ND (5)	ND (5) ND (5) ND (5)	ND (1) - - ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	ND (1)	ND (1)
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide)	ND (2) ND (1)	ND (2) ND (1)	ND (1)	ND (1)	ND (2) ND (1)	ND (2) ND (1)	ND (2) ND (1)	ND (1)	ND (1) J	ND (1)	ND (1)	ND (1)	ND (2) ND (1)	ND - - ND	ND - - ND	:	:	:		:	ND (2)	ND (1)	ND (1)
1,2-Dichloroethane 1,2-Dichloroethene (total) 1,2-Dichloropropane 1,4-Dioxane 2-Butanone (Methyl Ethyl Ketone)	ND (1)	ND (1)	ND (1) - - - ND (10)	ND (1) - - - ND (10)	ND (1)	ND (1)	ND (1)	ND (1) - - ND (10)	ND (1) J - - ND (10)	ND (1) - - - 0.79 J	ND (1) - - - ND (10)	ND (1) - - - ND (10)	ND (1) ND (10)	ND - - -	ND - - -		ND (5)	ND (5)	ND (1) ND (10)	ND (1)	ND (1) ND (1) ND (20)	ND (1) - - ND (10)	ND (1) - - - ND (10)
2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone		:	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)				ND (10) ND (10) ND (10)	ND (10) 0.4 J 1.6 JB	ND (10) ND (10) 5.8 JB	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) - - ND (10) ND (10)			-	ND (50) - ND (10)	ND (50) - ND (10)	ND (10) ND (10) ND (10)	- - - ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)
Acetonitrile Acrolein Acrylonitrile Allyl chloride	ND (2)	ND (2)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (2)	ND (2) J	ND (2)	ND (20) ND (20) ND (20)	ND (20) J ND (20) ND (20)	ND (20) J ND (20) J ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (2)						:		ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)
Benzene Bromodichloromethane Bromoform Bromomethane (Methyl Bromide)	ND (1)	ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) J - ND (1)	ND (1)	ND (1)	ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1) J	ND (1) ND (1) ND (1)	ND (1)	ND	ND - -	ND (17) - -	ND (5) ND (5) ND (10)	ND (5) ND (5) ND (10)	ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) - 0.38 JB
Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform (Trichloromethane)	ND (1)	ND (1)	ND (1) ND (1) ND (1)	0.42 JB ND (1) ND (1)	ND (1)	ND (1) ND (1)	ND (1)	0.28 JB ND (1) ND (1) J	ND (1) ND (1) ND (1) J	ND (1) ND (1) ND (1)	1.1 ND (1) ND (1) J	ND (1) ND (1) ND (1)	ND (1) ND (1) - ND (1)	ND - - -	ND - - -	:	ND (5)	ND (5) ND (10)	ND (1) ND (1) ND (1)	ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)	ND (1) ND (1) ND (1)
Chloromethane (Methyl Chloride) Chloroprene cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ND (1) ND (1) - ND (1) ND (1) J	ND (1) ND (1) - ND (1) ND (1)	ND (1) ND (2)	ND (1) ND (2)	ND (1) ND (1) - ND (1) ND (1)	ND (1) ND (1) ND (1) ND (1)	ND (1) ND (1) - ND (1) ND (1)	ND (2)	ND (1) ND (2)	ND (2)	ND (2)	ND (2)	ND (1) ND (1) 	- - ND -	ND		ND (5)	ND (5)	ND (1) ND (1)			ND (2)	ND (2)
Cyclohexane Dibromochloromethane Dibromomethane Diblorodifluoromethane (CFC-12)	ND (1)	ND (1)	ND (1) ND (1) J	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) ND (1)	ND (1) ND (1) J	ND (1) ND (1)	ND (1)			:	:			ND (1)	ND (1)	ND (1) ND (1) J	ND (1) ND (1) J
Ethyl methacrylate Ethylbenzene Iodomethane Isobutyl alcohol	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) ND (1)	ND -	ND -	ND (8.2)	:	:	:	:	ND (1)	ND (1)	1 R
Isopropylbenzene (Cumene) Methyl Acetate Methyl acrylonitrile Methyl cyclohexane	ND (2)	ND (2)			ND (2)	ND (2)	ND (2)	-	AMP OF	-	* ***	-	ND (2)	:		:	:	:	:	:	ND (2)	-	-
Methyl methacrylate Methyl Tert Bulyl Ether Methylene chloride Naphthalene Propiolitifie (Ethyl cyanida)	ND (1) J	ND (1)	ND (2) J	ND (2)	ND (1)	ND (1)	ND (1)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (1)	-	-	ND (17)	ND (5)	ND (5)	:	ND (1)		ND (2)	ND (2)
Propionitrile (Ethyl cyanide) Styrene Tetrachloroethene Toluene trane-1-2-Dichloroethene	ND (4) ND (1) ND (1)	ND (4) ND (1) J ND (1)	ND (1) - ND (0.5)	ND (1)	ND (4) - ND (1) J ND (1)	ND (4) ND (1) ND (1)	4 R - ND (1) ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) - - ND (0.5)	4 R ND (1) ND (1)	ND - ND ND	ND ND ND	ND (16)	ND (5) ND (5) ND (5)	ND (5) ND (5) ND (5)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1) - ND (0.5)	ND (1)	ND (1) J
trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene Trichloroethene Trichloroethene	ND (1)	ND (1)	ND (0.5) ND (1) J ND (1)	ND (0.5) ND (1) ND (1)	ND (1)	ND (1)	1 R	ND (0.5) ND (1) ND (1)	ND (0.5) ND (1) ND (1)	ND (0.5) ND (1) ND (1)	ND (0.5) ND (1) ND (1)	ND (0.5) ND (1) ND (1)	ND (1)	ND	ND		ND (5)	ND (5)	ND (1)	ND (1)	ND (0.5) ND (1)	ND (0.5) ND (1) J ND (1)	ND (0.5) ND (1) ND (1)
Trichlorofluoromethane (CFC-11) Trifluorotichloroethane (Freon 113) Vinyl acetate Vinyl chloride Xylene (total)	ND (1) ND (2) ND (1)	ND (1) ND (2) ND (1)	ND (1)	- - - ND (1)	ND (1) ND (2) ND (1)	ND (1) ND (2) ND (1)	ND (1) ND (2) ND (1)	- - - ND (1)	ND (1)	ND (1)	- - - ND (1)	ND (1)	ND (1) ND (2) ND (1)	- - ND -	ND	-	ND (10)	ND (10)	ND (1)	ND (1)		ND (1)	- - - ND (1)
Notes and abbreviations on last page	-	•	1.7	11/				(1)	(1)	11/	- 117	(1)								- (1)		- 10	- 1/

	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-00008S	IMW-03-000085	IMW-03-00008S	IMW-03-00008S	IMW-03-00008	S P-02A	P-02A	P-02B	P-02B	P-02B
	10/12/2005 Primary	7/12/2006 Primary	6/18/2007 Primary	11/27/2007 Primary	9/30/2008 Primary	8/11/2009 Primary	10/12/2010 Primary	9/20/2011 Primary	10/1/2012 Primary	9/23/2013 Primary	8/25/2014 Primary	9/1/2015 Primary	9/20/2016 Primary	10/3/2017 Primary	9/24/2018 Primary	10/30/1990 Primary	3/20/1991 Primary		3/20/1991 7/. Primary F	/29/1996 Primary
																		except arser	ata for all para nic replaced b 03-00004	
Inorganic Compounds (ug/L) Antimony, Total Arsenic, Dissolved	:	:	:	3.7 JB	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Arsenic, Total Barium, Total Beryllium, Total	:	-	ND (10) - 0.47 JB	57.6 J	:	:	:	:	:	:	- :	:	- :	:	-	-	:	92 ^(E)	22 ^[E]	:
Cadmium, Total Chromium, Total Cobalt, Total	-	:	ND (10)	ND (5) - ND (50)	:	:	:	:	:	:	:	:	:	:	- 1	21 -	:	38 ^[c]	:	
Copper, Total Cyanide Iron, Total	-		ND (25) ND (10) 5380 ⁽⁸⁰⁰⁾	14 ^[C] 1960 ^[BC]			:										:	20 ^[C]	:	
Lead, Dissolved Lead, Total Magnesium, Total			34400	13500												45	ND (5)	63 ^[F]	16	-
Manganese, Total Mercury, Total Nickel, Total			588 ^(BG) ND (0.2) ND (40)	142 ^(B) ND (0.2) J ND (40)																
Selenium, Total Silver, Total Sodium, Total			666000	ND (5) 332000																
Thallium, Total Tin, Total Vanadium, Total	-	:	ND (100)	- 1.7 JB	:	:	:	:	:	:	:	:	:	:	- 1	:	:	:	:	:
Zinc, Total Other (ug/L)	-	-	ND (20)	600	•			•	•		•		•		-	70		180		
Ammonia (as N) Chloride Hardness as CaCO3 pH (lab) (pH units)	:		1310000	350000 250000		:				:		:				-		:		
pri (ab) (pri units) Sulfate Sulfide Total Dissolved Solids (TDS)	:	:	60000 1800 3100000	43000 ND (1000)		:	:			:		:				:		:		-
Total phenois Total Suspended Solids (TSS)	:		ND (4000)	ND (4000)		:				:		:				-		150		
PCBs (ug/L) 4,4'-DDD 4,4'-DDT	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ND (0.05) ND (0.05)	:	:
alpha-BHC Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1260 (PCB-1260)	-																	ND (0.03) ND (1) ND (1) ND (1)		
Arocon-1200 (PCB-1200) delta-BHC Endosulfan Endrin	:																	ND (0.05) ND (0.05) ND (0.06)		
Endrin ketone gamma-BHC (Lindane) Heptachlor	-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ND (0) ND (0.04) ND (0.03)	:	-
Heptachlor epoxide Semi-Volatile Organic Compounds (ug/L) 1,2,4,5-Tetrachlorobenzene								- ND (10)	- ND (10)		- ND (10)	- ND (10)						ND (0.05)		
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	-	ND (10) ND (10)	ND (10)		ND (10) ND (10)			:				
1,2-Diphenylhydrazine 1,3,5-Tinitrobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50)	ND (50) ND (10)	ND (50) ND (10)	ND (10)	ND (10)	ND (50) ND (10)	ND (10)	ND (10)	ND (50) ND (10)	:	:	:	:	:	:	:
1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10) ND (50)	ND (10) ND (50)	ND (10) - -	ND (10) ND (50)	ND (10) ND (50)	:	:	:	:	:	:	:	
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (10) - - ND (10)	ND (10) - - ND (10)	ND (10) ND (50) ND (10)	ND (10) - - ND (10)	ND (10) - - ND (10)	ND (50) ND (10)	:	:	:	:	:		
2.4.6-Trichlorophenol 2.4-Dichlorophenol 2.4-Dimethylphenol 2.4-Dinitrophenol	- - ND (50)	ND (50)	- - ND (50) J	- - ND (50)	ND (50)	- - ND (50)	- - ND (50)	ND (10) ND (10) - -	ND (10) ND (10)	ND (50)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (50) J							-
2,4-Dinitrotoluene 2,6-Dichlorophenol 2,6-Dinitrotoluene	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)			ND (10) ND (10) ND (10)			ND (10) ND (10) ND (10)					:	:	:
2-Acetylaminofluorene 2-Chloronaphthalene 2-Chlorophenol	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (10)	ND (10)	ND (100) ND (10)	ND (10)	ND (10)	ND (100) ND (10)	:	:	:	:	:		:
2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Naphthylamine 2-Nitroaniline	ND (10) - ND (10) ND (50)	ND (10) - ND (10) ND (50)	ND (10) - ND (10) ND (50)	ND (10) - 10 R ND (50)	ND (10) - ND (10) ND (50)	ND (10) - ND (10) ND (50)	ND (10) - ND (10) ND (50)	ND (10)	ND (10)	ND (10) - ND (10) ND (50)	ND (10)	ND (10)	ND (10) - ND (10) ND (50)		-	:				
2-Nitrophenol 2-Picoline 2-Toluidine								ND (10) ND (20) ND (20)	ND (10) ND (20) ND (20)	ND (20)	ND (10) ND (20) ND (20)	ND (10) ND (20) ND (20)								-
3,3'-Dichlorobenzidine 3,3-Dimethylbenzidine 3-Methylcholanthrene	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) 50 R	ND (50) 50 R	ND (20) - - ND (20)	ND (20) - ND (20)	ND (50) ND (50)	ND (20) - - ND (20)	ND (20) ND (20)	ND (50) ND (50)					:		:
3-Methylphenol 3-Nitroaniline 4,6-Dinitro-2-methylphenol	ND (10) ND (50)	ND (10)	ND (10) ND (50)	ND (10) ND (50)	ND (10)	ND (10) ND (50)	ND (10) ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	:	:	:	:	:	:	
4-Aminobiphenyl 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (50) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (50)	:		:	:	:		-
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	- - ND (50)	ND (50)	ND (50)	- - ND (50)	ND (50)	ND (50)	- - ND (50)	ND (10) ND (50)	ND (10) ND (50)	- - ND (50)	ND (10) ND (50)	ND (10) ND (50)	ND (10) ND (10)							
4-Nitroquinoline-N-oxide 5-Nitro-2-Toluidine		ND (50)	-	ND (30)	ND (30)	ND (00)	ND (30)	ND (30) - ND (20)	ND (20)	ND (30)	ND (30)	ND (30)	ND (50)			:				
7,12-Dimethylbenz(a)anthracene a,a-Dimethylphenethylamine Acenaphthene	-	:	:	:	- :	:	:	ND (20) 50 R ND (10)	ND (20) ND (50) ND (10)	:	ND (20) ND (50) J ND (10)	ND (20) ND (50) ND (10)	:		- 1	:	:	:	:	
Acenaphthylene Acetophenone Aniline	ND (10) - -	ND (10)	ND (10)	ND (10) - -	ND (10)	ND (10) - -	ND (10)	ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	:	- :	-	- :	:	:	-
Anthracene Aramite Benzidine		-	-	-	-	-		ND (10) - -	ND (10) - -	-	ND (10) - -	ND (10) - -	-			:	-	:	:	-
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10)							
Benzo(k)fluoranthene Benzoic acid Benzyl Alcohol	ND (10)	ND (10)	ND (10)	- ND (10)	ND (10)	ND (10)	- ND (10)	ND (10) ND (10)	ND (10) ND (10) ND (10)	- ND (10)	ND (10) ND (10)	ND (10) J ND (10) ND (10)								
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate**	ND (10) - -	ND (10)	ND (10) - -	ND (10) - -	ND (10) -	ND (10) - -	ND (10) -	ND (10) ND (10)	ND (10) 1.7 JB ^[0]	ND (10) -	ND (10) 4.4 JB ^(AC)	ND (10) 1.7 JB ^[C]	ND (10) - ND (10)	:		:	-	12 ^[ACI]	:	
Butyl benzylphthalate Carbazole Chlorobenzilate Chrysene	-	:	:	:	:	:	:	ND (10) ND (10)	ND (10) - ND (10) ND (10)	:	ND (10) - ND (10) ND (10)	ND (10) - ND (10) ND (10)	:	:	- :	:	:	:	:	-
Diallate Dibenz(a,h)anthracene Dibenzofuran	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10) - ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)			:				
Diethyl phthalate Dimethoate Dimethyl phthalate	ND (10) - ND (10)	ND (10) - ND (10)	ND (10) - ND (10)	ND (10) - ND (10)	ND (10) - ND (10)	ND (10) - ND (10)	ND (10) - ND (10)	ND (20)	ND (20)	ND (10) - ND (10)	ND (20)	ND (20)	ND (10) - ND (10)	:	- :	:	:	:	÷	:
Di-n-butyiphthalate Di-n-octyl phthalate Dinoseb	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20) J	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	ND (10) ND (20)	ND (10) - -	0.7 J - -	ND (10) ND (20)	ND (10)	1.5 JB - -	0.44 JB ND (10) ND (20)	:	-	:	:	:	:	:
Diphenylamine Disulfoton Ethyl methanesulfonate Famphur	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)	ND (10) ND (50) ND (10)	10 R	10 R	ND (10) ND (50) ND (10)	10 R	10 R	ND (10) ND (50) ND (10)	:		:	:	:		
Fluoranthene Fluorene Hexachlorobenzene	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)							
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	50 R ND (10)	50 R ND (10)	50 R ND (10)	50 R ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (10)	ND (10)	50 R ND (10)	ND (10)	ND (10)	ND (50) ND (10)							
Hexachloropropene Indeno(1,2,3-cd)pyrene Isophorone Isosaffole	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	ND (100) ND (10)	- ND (10)	- ND (10)	ND (100) ND (10)	- ND (10)	- ND (10)	ND (100) ND (10)	:		:	:	:	:	:
isosatrole Methapyrilene Methyl methanesulfonate Naohthalene	-							ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)		ND (50) ND (10) ND (10)	ND (50) ND (10) ND (10)								
Nitrosodiethylamine N-Nitrosodiethylamine N-Nitrosodimethylamine	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10)	-	ND (10) ND (10) ND (10)	ND (10)		ND (10) ND (10) ND (10) J			:				
N-Nitrosodi-N-butylamine N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10) ND (10)	:	- 1	:	:	:	:	
N-Nitrosomethylethylamine N-Nitrosomorpholine N-Nitrosopiperidine	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10) ND (10)	:	- :	:	:	:	:	-
N-Nitrosopyrrolidine o.o.o-Triethylphosphorothioste P-DIMETHYLAMINOAZOBENZENE Pentachlarohenzene								ND (10) ND (50) ND (20) ND (10)	ND (10) ND (50) ND (20) ND (10)		ND (10) ND (50) ND (20) ND (10)	ND (10) ND (50) ND (20) ND (10)				:				
Pentachloroethane Pentachloronitrobenzene Pentachlorophenol	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	ND (50) ND (10)	:	- :	ND (50) ND (10)	-	:	ND (50) ND (10)							
Phenacetin Phenanthrene Phenol	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (20)	ND (20)	ND (10)	ND (20)	ND (20)	ND (10) ND (10)	:	- :	-	:	ND (10) 88	:	-
Phorate p-Phenylenediamine Pronamide Pyrene	- - ND (10)	ND (10)	- - ND (10)	- - ND (10)	- - ND (10)	- - ND (10)	- - ND (10)	ND (50) - ND (20)	ND (50) - ND (20)	- - ND (10)	ND (50) - ND (20)	ND (50) - ND (20)	- - ND (10)	:	- 1	:		:	:	
Pyridine Safrole Sulfoten	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (20) ND (20)	ND (50)	ND (50)	ND (20) ND (20)	- ND (50)	ND (50)	ND (20) ND (20)							
Thionazin Volatile Organic Compounds (ug/L)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	-	112 (00)	ND (50)	-	-	ND (50)			-	-			-
1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	=	:	:	:	:	:	:	:	:	:		:	ND (1) ND (1) ND (1)	ND -	ND -	÷	:	:	÷	:
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichloropropane	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1) J	ND (1) ND (1)	- ND (1) ND (1) J	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND -	ND -					
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide)					i i		- 1				- 1		ND (2) ND (1)	ND -	ND -					
1,2-Dichloroethane 1,2-Dichloroethene (total) 1,2-Dichloropropane	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) J - -	ND (1)	ND (1)	ND (1)	- ND (1)	ND -	ND -	-	-	:	:	
1,4-Dioxane 2-Butanone (Methyl Ethyl Ketone) 2-Chloroethyl vinyl ether 2-Hexanone	ND (10)	ND (10)	ND (10) ND (10)	ND (10) - ND (10)	ND (10)	ND (10) - ND (10)	ND (10) ND (10)	ND (10)	ND (10)	ND (10) ND (10)	ND (10) - ND (10)	ND (10)	:	:	:	:	:	:		:
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) Acetone	ND (10) ND (10) J ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) 1.6 JB	ND (10) ND (10)	ND (10) ND (10) ND (10)	- ND (10)	:		-	:	:	i	
Acetonitrile Acrolein Acrylonitrile Allyl chloride	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (20) J ND (20) ND (20)	ND (20) J ND (20) J ND (20)	ND (20) ND (20) ND (20)	ND (20) ND (20) ND (20)	ND (2)			:		:		-
Benzene Bromodichloromethane Bromoform	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1) J	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND -	ND -	:		98000 [ABCE]	- 43	300 ^{[ABCI}
Bromomethane (Methyl Bromide) Carbon disulfide Carbon tetrachloride	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) J ND (1)	ND (1) ND (1)	ND (1) 0.17 JB	ND (1) ND (1)	ND (1) ND (1)	ND (1) J ND (1)	ND (1) ND (1)	ND (1) ND (1) ND (1)	ND -	ND -	:	:	:	:	:
Chlorobenzene Chloroethane Chloroform (Trichloromethane)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1) J	ND (1) ND (1) J	ND (1) ND (1)	ND (1) ND (1) J	ND (1) ND (1)	ND (1)	:	:	:	:	:	:	:
Chloromethane (Methyl Chloride) Chloroprene cis-1,2-Dichloroethene cis-1,3-Dichloroprene	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (1)	ND	ND	:	-	:	:	:
cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)							:
Dichlorodifluoromethane (CFC-12) Ethyl methacrylate Ethylbenzene	ND (1)	ND (1)	ND (1) J	ND (1)	ND (1)	ND (1) J	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) J	ND (1)	ND (1) ND (1) ND (1)	- - ND	- - ND			ND (5)	:	9.3
lodomethane Isobutyl alcohol Isopropylbenzene (Cumene)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)		:	:	:		:		-
Methyl Acetate Methyl acrylonitrile Methyl cyclohexane Methyl methacylote		NP (**	MP (C)	A (0.00)	AND COL	AUD CON	Aug. co.	AUD CON	AND CO.	AUD CO	AND COL	- - ND (2)	ND (2)	:	:	:	:	:		
Methyl methacrylate Methyl Tert Butyl Ether Methylene chloride	ND (2)	ND (2)	ND (2) J - -	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (1)	:	:	-	:	20-10	:	:
Naphthalene Propionitrile (Ethyl cyanide) Styrene Tetrachloroethene	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	4 R - ND (1)	ND - ND	ND - ND	-		230 ^[C]		22 - ND (16)
Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloroorooene	ND (0.5)	ND (0.5)	ND (0.5) ND (1) J	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5) ND (1)	ND (0.5) ND (1)	ND (0.5) ND (1)	ND (0.5) ND (1)	ND (1) ND (1)	ND ND	ND ND -	:		:	- 1	ND (16) ND (10) - -
trans-1,3-Dichloro-2-butene Trichloro-gethene Trichlorofluoromethane (CFC-11)	ND (1) ND (1)	ND (1) ND (1)	ND (1) J ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1)	ND (1)	ND -	ND -			:	: ,	ND (15)
Triflucroinormennane (CFC-11) Triflucroincholoroethane (Freon 113) Vinyl acetate Vinyl chloride	1												ND (1) ND (2) ND (1)	ND	ND			:	:	:
Xylene (total) Notes and abbreviations on last page	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	- ' '	-	-	-	-		- 1	ND (17)

Notes and abbreviations

- 1: Phase II RFI Tier 1A Groundwater Screening Criteria cited in Phase II RFI-ISA Report (AECOM) based on IDEM Ambient Surface Water Criteria (ASWQC), for human exposures to non-drinking water sources (December 2002)
- 2: Phase II RFI Tier 1A Groundwater Screening Criteria cited in Phase II RFI-ISA Report (AECOM) based on IDEM ASWQC, for chronic exposure of aquatic life to surface water (2002)
- 3: Phase II RFI Tier 1A Groundwater Screening Criteria cited in Phase II RFI-ISA Report (AECOM) based on IDEM Regulations (327 IAC 2-1.5-8(b)(6)) and are 30-day average criteria
- 4: Phase II RFI Tier 1A Groundwater Screening Criteria cited in Phase II RFI-ISA Report (AECOM) based on IDEM RISC Default Closure Values for Industrial Exposure Scenarios (2006)
- 5: Criteria based on Chromium VI
- 6: Tier 1B Default Risk Criteria cited in Phase II RFI-FPA Report (AECOM) based on, in priority of order, IDEM ambient surface water quality criteria and U.S. EPA National Recommended Water Quality Criteria, and U.S. EPA Ecological Screening Levels multiplied by the FPA Default Dilution factor of 10.
- A: Indicates result is greater than Tier1A Groundwater to Surface Water Human Carcinogen
- B: Indicates result is greater than Tier1A Groundwater to Surface Water Human Non-Carcinogen
- C: Indicates result is greater than Tier1A Groundwater to Surface Water Ecological Receptors
- D: Indicates result is greater than Tier1A Groundwater to Surface Water Wildlife
- E: Indicates result is greater than Tier1A Exposure to Groundwater Industrial Carcinogen
- F: Indicates result is greater than Tier1A Exposure to Groundwater Industrial Non-Carcinogen
- G: Facility Parameter Area sample result is greater than Tier 1B Default Screening Criteria H: Facility Parameter Area sample result is greater than Tier 1B Non-Default Screening Criteria
- I: Facility Parameter Area sample result is greater than Tier 1B Default Screening Criteria Ecological
- [a] Recent analytical results represented by IMW-02-00004S/D. However, the results reported for this location are evaluated in the HHRA.

IHSC: Indiana Harbor Shipping Canal

- J: Estimated value. All results reported are less than the DL, but greater than the MDL.
- JB: Suspected lab contaminant, not expected to be present in sample.
- R: Data rejected in accordance with established data validation acceptance criteria.
- ** Common lab contaminant

APPENDIX B

Analytical Soil Data Used in Risk Assessment

APPENDIX - B
SUMMARY OF SOIL ANALYTICAL RESULTS
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA

Location	IDEM	IDEM	SB-01	SB-01	SB-02	SB-02	SB-03	SB-03	SB-04	SB-04	SB-04	SB-05	SB-05	SB-05	SB-06	SB-06	SB-07	SB-07	SB-08	SB-08
Sample Date	Com/Ind	Excavation	03/05/2019	03/05/2019	03/05/2019				03/05/2019	03/05/2019	03/05/2019	03/06/2019	03/06/2019			03/06/2019	03/06/2019			
Sample Type	Direct	Direct	N	N	N	N	N	N	N	FD	N	N	N	FD	N	N	N	N	N	N
Sample Depth (bgs)	Contact	Contact	0 - 2 (ft)	5 - 7 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	6 - 8 (ft)	6 - 8 (ft)	0 - 2 (ft)	2 - 4 (ft)	0 - 2 (ft)	4 - 6 (ft)	0 - 2 (ft)	2 - 4 (ft)
January Topin (1997)			5 = (11)	3 1 (14)	- (()	5 5 (11)	3 – (13)	5 5 (11)	3 – (13)	5 – (1.1)	3 3 (14)	- (,	()	5 5 (1.1)	()	_ (14)	- (()	(1.1)	()	
Inorganic Compounds (mg/kg)																				
Antimony	470	790	0.71 J	ND (1)	ND (0.92)	ND (1.1)	ND (0.9)	ND (1.1)	2.6	ND (17)	ND (0.84)	ND (1.1) F2F1	0.59 J	0.46 J	1.5 J	ND (0.86)	ND (2)	ND (1.1)	2.2 J	0.79 J
Arsenic	30	920	3.8 J	4.3	ND (4.6)	2.1	ND (4.5)	2.2	ND (15)	ND (17)	3.2	3.7 J	3.4	3.5	ND (22)	1.4	5.6	1.9	ND (17)	5.9 J
Barium	100000	100000	100	17 J	280	3.3 J	300	5.2 J	150	180	9.4 J	140 F1	11 J	11 J	170	2.6 J	210	3.4 J	110	31
Beryllium	2300	3800	0.41 J	ND (0.51)	6.2	ND (0.55)	6.6	ND (0.54)	0.55	0.4 J	0.072 J	2.4 F1	0.097 J	0.081 J	2.5	0.047 J	4	ND (0.56)	0.88	0.34 J
Cadmium	980	1900	0.24	0.089 J	0.072 J	ND (0.22)	0.11 J	0.11 J	0.72	ND (3.3)	0.081 J	0.59	0.26	0.27	0.56	0.059 J	1.5	0.057 J	1.5	0.5
Chromium	-	-	210	7.8	22	6	100	4.7	800	1100	23 F1	120	7.4	8	920	4.1	120	4.1	640	320
Cobalt	350	590	2.2	1.8	0.67 J	1.4	0.88 J	1.9	2.3	1.9	3.5	1.2	1.4	1.5	1.2	1.4	3.7	1.1	6.1	3
Copper	47000	79000	16	6.1	6.5 J	1.8 J	24	3.7	62	45	9	20	7.3	6.6	31	1.3 J	100	2 J	140	58
Cyanide	150	560	0.43 J	ND (0.56)	2.3	ND (0.58)	1.9	ND (0.53)	1.6	1.2	ND (0.59)	0.6	ND (0.5)	ND (0.55)	0.55 J	ND (0.6)	1.2	ND (0.6)	0.57	0.22 J
Iron	100000	100000	44000	5400	6100	4100	11000	4600	66000	210000 [AB]	9300 F2	26000	7000	7200	88000	3500	67000	4200	110000 [AB]	50000
Lead	800	1000	29	8.4	6	2.1	9.8	4	94	33	7.1	37 F1	16	17	40	2.5	110	2.3	170	32
Magnesium	-	-	22000	15000	37000	12000	36000	19000	28000	26000	11000 F1F2	26000 F2	8200	9200	30000	16000	25000	9800	21000	7000
Manganese	26000	46000	4100 B	160 B	3300 B	160 B	3700 B	180 B	15000 B	16000 B	360 B	4200	220 B	300 B	5100 B	140 B	4200 B	120 B	11000 B	6100
Mercury	3.1	3.1	ND (0.12)	ND (0.12)	ND (0.11)	ND (0.13)	ND (0.11)	ND (0.12)	0.08 J	0.17	ND (0.12)	0.049 J	ND (0.11)	ND (0.13)	0.061 J	ND (0.13)	0.13	ND (0.13)	0.08 J	0.038 J
Nickel	22000	38000	9.3	3.7 J	3.6 J	2.6 J	10	3.7 J	22	14 J	6.2	9	4 J	3.9 J	12	2.3 J	44	2.6 J	72	34
Selenium	5800	9800	ND (7.9)	ND (1.5)	3.7 J	ND (1.6)	ND (6.7)	ND (1.6)	ND (23)	ND (25)	0.78 J	ND (8)	0.5 J	ND (1.5)	ND (32)	ND (1.3)	4.6 J	ND (1.7)	ND (26)	ND (13)
Silver	5800	9800	0.91 B	0.26 JB	0.81 B	0.13 JB	0.76 B	0.21 JB	2.9 B	2.6 B	0.2 JB	ND (0.53)	0.26 JB	0.23 JB	2.9 B	0.2 JB	1.1 B	0.35 JB	2.2 B	ND (0.44)
Sodium	-	-	220 J	100 J	1300	100 J	1300	100 J	170 J	190 J	77 J	810	89 J	99 J	430 J	92 J	550	82 J	260 J	73 J
Thallium	12	20	ND (5.3)	ND (1)	ND (4.6)	ND (1.1)	ND (4.5)	ND (1.1)	ND (15)	ND (17)	ND (0.84)	6.7	ND (1)	ND (0.99)	ND (22)	ND (0.86)	ND (4.9)	ND (1.1)	ND (17)	4.8 J
Tin	100000	100000	5 J	ND (10)	ND (9.2)	ND (11)	4.4 J	ND (11)	7.6	6 J	3 J	5.2 J	3.8 J	3.7 J	15	ND (8.6)	11	ND (11)	15	10
Vanadium	5800	9900	110	9	17	11	25	8.7	230	540	13	46 F2F1	9.2	8.7	240	8.6	48	9.5	200	42
Zinc	100000	100000	88	26	23	12	140	19	260	90	24	150 F1	40	42	120	12	340	11	330	100
Other (mg/kg)																				
. 5 5/																				
I Sulfide	_	_	63	49	1500	34 I	1500	ND (35)	94	82	83	<i>4</i> 30	ND (32)	19 I	180	ND (36)	230	21 I	90	19 I
Sulfide	-	-	63	49	1500	34 J	1500	ND (35)	94	82	83	430	ND (32)	19 J	180	ND (36)	230	21 J	90	19 J
	-	-	63	49	1500	34 J	1500	ND (35)	94	82	83	430	ND (32)	19 J	180	ND (36)	230	21 J	90	19 J
Semi-Volatile Organic Compounds (ug/kg)	1000000	1000000														, ,				
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane)	1000000 82000000	- 1000000 100000000	ND (540)	ND (110)	ND (110)	ND (110)	ND (110)	ND (120)	ND (110)	ND (530)	ND (110)	ND (210)	ND (110)	ND (110)	ND (430)	ND (120)	ND (210)	ND (120)	ND (280)	ND (110)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol	82000000	100000000	ND (540) ND (810)	ND (110) ND (160)	ND (110) ND (160)	ND (110) ND (170)	ND (110) ND (170)	ND (120) ND (170)	ND (110) ND (160)	ND (530) ND (800) F1	ND (110) ND (160)	ND (210) ND (320)	ND (110) ND (160)	ND (110) ND (160)	ND (430) ND (650)	ND (120) ND (180)	ND (210) ND (320)	ND (120) ND (180)	ND (280) ND (420)	ND (110) ND (160)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	82000000 820000	100000000 1800000	ND (540)	ND (110)	ND (110)	ND (110)	ND (110)	ND (120)	ND (110)	ND (530) ND (800) F1 ND (800) F1	ND (110) ND (160) ND (160)	ND (210) ND (320) ND (320)	ND (110)	ND (110)	ND (430) ND (650) ND (650)	ND (120)	ND (210) ND (320) ND (320)	ND (120)	ND (280) ND (420) ND (420)	ND (110) ND (160) ND (160)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol	82000000	100000000 1800000 5200000	ND (540) ND (810) ND (810)	ND (110) ND (160) ND (160)	ND (110) ND (160) ND (160)	ND (110) ND (170) ND (170)	ND (110) ND (170) ND (170)	ND (120) ND (170) ND (170)	ND (110) ND (160) ND (160)	ND (530) ND (800) F1	ND (110) ND (160)	ND (210) ND (320) ND (320) ND (320)	ND (110) ND (160) ND (160)	ND (110) ND (160) ND (160)	ND (430) ND (650)	ND (120) ND (180) ND (180)	ND (210) ND (320)	ND (120) ND (180) ND (180)	ND (280) ND (420)	ND (110) ND (160)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	82000000 820000 2500000	100000000 1800000	ND (540) ND (810) ND (810) ND (810)	ND (110) ND (160) ND (160) ND (160)	ND (110) ND (160) ND (160) ND (160)	ND (110) ND (170) ND (170) ND (170)	ND (110) ND (170) ND (170) ND (170)	ND (120) ND (170) ND (170) ND (170)	ND (110) ND (160) ND (160) ND (160)	ND (530) ND (800) F1 ND (800) F1 ND (800)	ND (110) ND (160) ND (160) ND (160)	ND (210) ND (320) ND (320)	ND (110) ND (160) ND (160) ND (160)	ND (110) ND (160) ND (160) ND (160)	ND (430) ND (650) ND (650) ND (650)	ND (120) ND (180) ND (180) ND (180)	ND (210) ND (320) ND (320) ND (320)	ND (120) ND (180) ND (180) ND (180)	ND (280) ND (420) ND (420) ND (420)	ND (110) ND (160) ND (160) ND (160)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	82000000 820000 2500000 16000000	100000000 1800000 5200000 34000000	ND (540) ND (810) ND (810) ND (810) ND (810)	ND (110) ND (160) ND (160) ND (160) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160)	ND (110) ND (170) ND (170) ND (170) ND (170)	ND (110) ND (170) ND (170) ND (170) ND (170)	ND (120) ND (170) ND (170) ND (170) ND (170)	ND (110) ND (160) ND (160) ND (160) ND (160)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800)	ND (110) ND (160) ND (160) ND (160) ND (160)	ND (210) ND (320) ND (320) ND (320) ND (320)	ND (110) ND (160) ND (160) ND (160) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160)	ND (430) ND (650) ND (650) ND (650) ND (650)	ND (120) ND (180) ND (180) ND (180) ND (180)	ND (210) ND (320) ND (320) ND (320) ND (320)	ND (120) ND (180) ND (180) ND (180) ND (180)	ND (280) ND (420) ND (420) ND (420) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (160)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	82000000 820000 2500000 16000000 16000000	100000000 1800000 5200000 3400000 3400000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	82000000 820000 2500000 16000000 74000	100000000 1800000 5200000 34000000 3400000 3400000 520000 1000000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (210) ND (53)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	82000000 820000 2500000 16000000 74000 15000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (210)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	82000000 820000 2500000 16000000 74000 15000 60000000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000 6800000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) 52 J	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57) ND (57) ND (17)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (58)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) ND (110)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (210) ND (53) ND (53)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870) ND (220) ND (220)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) ND (110)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) ND (140)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol (o-Cresol)	82000000 820000 2500000 16000000 74000 15000 60000000 5800000 3000000 41000000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000 6800000 87000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) 52 J ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220)	ND (110) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54) 28 ND (220)	ND (110) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57) ND (57) ND (17) ND (230)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) 8.5 J ND (220)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (58) ND (17) ND (230)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 22 ND (220)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) ND (110) 150 ND (420)	ND (110) ND (160) ND (160) ND (160) ND (350) ND (210) ND (210) ND (53) ND (53) 10 J	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 31 ND (220)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870) ND (220) ND (220) 64 J ND (870)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18) ND (240)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) ND (110) 44 ND (430)	ND (120) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18) ND (240)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) ND (140) 64 ND (570)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 46 ND (220)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline	82000000 820000 2500000 16000000 74000 15000 60000000 5800000 3000000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000 6800000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) 52 J ND (1100) ND (1100) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220) ND (220)	ND (110) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54) 28 ND (220) ND (220)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57) ND (57) ND (17) ND (230) ND (230)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (220)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (17) ND (230) ND (230)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (220)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (1100) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 22 ND (220) ND (220) ND (220)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) ND (110) 150 ND (420) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (350) ND (210) ND (210) ND (53) ND (53) 10 J ND (210) ND (210)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 31 ND (220) ND (220)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870) ND (220) ND (220) 64 J ND (870) ND (870) ND (870)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18) ND (240) ND (240)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) ND (110) 44 ND (430) ND (430) ND (430)	ND (120) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18) ND (240) ND (240)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (570) ND (570) ND (140) ND (140) 64 ND (570) ND (570)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 46 ND (220) ND (220) ND (220)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4-Erichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol	82000000 820000 2500000 16000000 74000 15000 60000000 5800000 3000000 41000000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000 6800000 87000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) 52 J ND (1100) ND (1100) ND (1100) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220) ND (220) ND (220) ND (220)	ND (110) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54) 28 ND (220) ND (220) ND (220) ND (220) ND (220) ND (54)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57) ND (57) ND (17) ND (230) ND (230) ND (230) ND (230)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (220) ND (220) ND (220)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (17) ND (230) ND (230) ND (230) ND (230) ND (230)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (220) ND (220) ND (220) ND (220)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (1100) ND (1100) ND (1100) ND (1100) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 22 ND (220) ND (220) ND (220) ND (220) ND (54)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (110) ND (110) 150 ND (420) ND (420) ND (420) ND (420) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) 10 J ND (210) ND (210) ND (210) ND (210)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 31 ND (220) ND (220) ND (220) ND (220) ND (55)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870) ND (220) ND (220) 64 J ND (870) ND (820)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (59) ND (18) ND (240) ND (240) ND (240) ND (240)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) ND (110) 44 ND (430) ND (430) ND (430) ND (430) ND (430) ND (430) ND (410)	ND (120) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18) ND (240) ND (240) ND (240) ND (240)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) 64 ND (570) ND (140)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 46 ND (220) ND (220) ND (220) ND (220)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol	82000000 820000 2500000 16000000 74000 15000 60000000 5800000 3000000 41000000 80000000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000 6800000 87000000 18000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) 52 J ND (1100) ND (1100) ND (270) ND (2200)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220) ND (220) ND (220) ND (220) ND (220) ND (54) ND (440)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54) 28 ND (220) ND (220) ND (220) ND (220) ND (220) ND (54) ND (430)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (57) ND (17) ND (230) ND (230) ND (230) ND (230) ND (57)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (220) ND (220) ND (56) ND (220) ND (56) ND (440)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (58) ND (58) ND (17) ND (230) ND (230) ND (230) ND (230) ND (58) ND (460)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (220) ND (220) ND (220) ND (240) ND (254) ND (254) ND (254) ND (254) ND (254) ND (254) ND (430)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (1100) ND (1100) ND (1100) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 22 ND (220) ND (220) ND (220) ND (220) ND (240) ND (254) ND (254) ND (254) ND (254) ND (254) ND (430)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (110) ND (110) 150 ND (420) ND (420) ND (420) ND (420) ND (420) ND (110)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) 10 J ND (210) ND (210) ND (210) ND (53)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 31 ND (220) ND (220) ND (220) ND (55) ND (55) ND (440)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870) ND (220) 64 J ND (870) ND (1700)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (59) ND (18) ND (240) ND (240) ND (240) ND (59) ND (59) ND (59)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) ND (110) 44 ND (430) ND (460)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (59) ND (18) ND (240) ND (240) ND (240) ND (240) ND (59) ND (189) ND (240) ND (59) ND (480)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) 64 ND (570) ND (570) ND (570) ND (570) ND (570) ND (570) ND (140) ND (140) ND (140) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 46 ND (220) ND (220) ND (220) ND (55) ND (55) ND (440)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine	82000000 820000 2500000 16000000 74000 15000 60000000 5800000 3000000 41000000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000 6800000 87000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) 52 J ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (270) ND (270) ND (540)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (54) ND (54) 24 ND (220) ND (220) ND (220) ND (54) ND (220) ND (54) ND (440) ND (440) ND (110)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54) 28 ND (220) ND (220) ND (220) ND (220) ND (240) ND (254) ND (254) ND (254) ND (254) ND (110)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (57) ND (230) ND (230) ND (230) ND (57) ND (460) ND (460)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (220) ND (220) ND (220) ND (220) ND (56) ND (440) ND (110)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (58) ND (58) ND (17) ND (230) ND (230) ND (230) ND (58) ND (58) ND (460) ND (58)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) 100 ND (220) ND (220) ND (220) ND (220) ND (54) ND (54	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (270) ND (1100) ND (270) ND (2100) ND (2300)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (360) ND (220) ND (54) ND (54) 22 ND (220) ND (220) ND (220) ND (220) ND (240) ND (254) ND (254) ND (254) ND (254) ND (254) ND (254) ND (110)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (110) ND (110) 150 ND (420) ND (420) ND (420) ND (110) ND (850) ND (850) ND (210)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) 10 J ND (210) ND (210) ND (210) ND (53) ND (210) ND (53) ND (210) ND (53) ND (53)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) 31 ND (220) ND (220) ND (220) ND (255) ND (55) ND (440) ND (110)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (870) ND (870) ND (870) ND (870) ND (870) ND (1700) ND (1700) ND (430)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18) ND (240) ND (240) ND (240) ND (240) ND (59) ND (180) ND (240) ND (59) ND (180)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) ND (110) 44 ND (430) ND (430) ND (430) ND (110) ND (430) ND (110) ND (860) ND (210)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (59) ND (18) ND (240) ND (240) ND (240) ND (59) ND (180) ND (59) ND (180) ND (59) ND (180) ND (59) ND (180) ND (120)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) 64 ND (570) ND (570) ND (570) ND (570) ND (570) ND (140) ND (1100) ND (1100) ND (280)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 46 ND (220) ND (220) ND (220) ND (55) ND (55) ND (440) ND (110)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline	82000000 820000 2500000 16000000 74000 15000 60000000 5800000 3000000 41000000 80000000 - 51000 -	100000000 1800000 5200000 34000000 34000000 520000 1000000000 9800000 6800000 87000000 - 27000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) 52 J ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (270) ND (540) ND (540) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220) ND (220) ND (220) ND (54) ND (220) ND (54) ND (110) ND (110) ND (220)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54) 28 ND (220) ND (220) ND (220) ND (54) ND (220) ND (54) ND (110) ND (110) ND (220)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (57) ND (230) ND (230) ND (230) ND (57) ND (460) ND (110) ND (230)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (220) ND (220) ND (56) ND (56) ND (440) ND (110) ND (220)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (58) ND (58) ND (17) ND (230) ND (230) ND (58) ND (17) ND (230) ND (58) ND (120) ND (58)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (220) ND (220) ND (54) ND (240) ND (254) ND (255)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (2100) ND (230) ND (530) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) 22 ND (220) ND (220) ND (220) ND (220) ND (54) DD (220) ND (54) ND (110) ND (110) ND (220)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (110) ND (110) 150 ND (420) ND (420) ND (420) ND (110) ND (850) ND (210) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (53) ND (210) ND (210) ND (53) ND (210) ND (53) ND (210) ND (53) ND (53) ND (210) ND (53) ND (54) ND	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) 31 ND (220) ND (220) ND (220) ND (55) ND (55) ND (440) ND (110) ND (220)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870) ND (220) 64 J ND (870) ND (870) ND (870) ND (220) ND (220) ND (1700) ND (430) ND (870)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (59) ND (18) ND (240) ND (240) ND (59) ND (240) ND (59) ND (180) ND (240) ND (59) ND (180) ND (240) ND (59) ND (120) ND (120) ND (240)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) ND (110) 44 ND (430) ND (430) ND (430) ND (110) ND (430) ND (110) ND (860) ND (210) ND (430)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (18) ND (240) ND (240) ND (240) ND (59) ND (18) ND (240) ND (59) ND (180) ND (120) ND (120) ND (240)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) 64 ND (570) ND (570) ND (570) ND (140) ND (140) ND (1100) ND (280) ND (570)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (220) ND (55) A6 ND (220) ND (55) ND (440) ND (110) ND (220)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol	82000000 820000 2500000 16000000 74000 15000 60000000 5800000 41000000 51000	100000000 1800000 5200000 34000000 3400000 520000 100000000 9800000 6800000 87000000 18000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) S2 J ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (270) ND (540) ND (540) ND (1100) ND (1100) ND (1100) ND (1100) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (54) ND (54) 24 ND (220) ND (220) ND (220) ND (54) ND (220) ND (54) ND (110) ND (110) ND (220) ND (220) ND (360)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) ND (54) 28 ND (220) ND (220) ND (54) ND (54) ND (54) ND (110) ND (110) ND (220) ND (220) ND (350)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (57) ND (230) ND (230) ND (57) ND (230) ND (57) ND (460) ND (110) ND (230) ND (230) ND (230)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (56) ND (56) ND (56) ND (440) ND (110) ND (220) ND (370)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (17) ND (230) ND (230) ND (58) ND (120) ND (58) ND (120) ND (230) ND (58) ND (120) ND (230)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (220) ND (54) ND (54) ND (220) ND (54) ND (110) ND (110) ND (220) ND (110) ND (220) ND (360)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (2100) ND (530) ND (1100) ND (1100) ND (1100) ND (530) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) 22 ND (220) ND (220) ND (220) ND (54) ND (54) DN (220) ND (54) ND (110) ND (220) ND (110) ND (220) ND (220) ND (360)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (110) ND (110) 150 ND (420) ND (420) ND (420) ND (110) ND (850) ND (210) ND (420) ND (420) ND (700)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) 10 J ND (210) ND (53) ND (53) ND (53) ND (210) ND (53) ND (54) ND (54)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) 31 ND (220) ND (220) ND (220) ND (55) ND (110) ND (110) ND (110) ND (220) ND (220) ND (360)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (870) ND (220) 64 J ND (870) ND (870) ND (870) ND (220) ND (220) ND (1700) ND (430) ND (430) ND (870) ND (4400)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (18) ND (240) ND (59) ND (240) ND (59) ND (170) ND (180) ND (240) ND (59) ND (180) ND (240) ND (390)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) 44 ND (430) ND (430) ND (110) ND (110) ND (110) ND (860) ND (210) ND (430) ND (210) ND (430) ND (710)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (18) ND (240) ND (240) ND (59) ND (240) ND (59) ND (180) ND (240) ND (59) ND (180) ND (240) ND (59) ND (180) ND (240) ND (390)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) 64 ND (570) ND (570) ND (140) ND (1100) ND (1100) ND (280) ND (570) ND (930)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (220) ND (55) A6 ND (220) ND (55)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 3000000 41000000 51000 - 66000 -	100000000 1800000 5200000 34000000 3400000 520000 1000000000 9800000 6800000 87000000 - 2700000 - 140000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) S2 J ND (1100) ND (1100) ND (270) ND (270) ND (2200) ND (540) ND (1100) ND (1100) ND (1100) ND (1100) ND (1100) ND (1100) ND (270) ND (2200) ND (540) ND (1100) ND (1100) ND (1800) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (54) ND (54) 24 ND (220) ND (54) ND (220) ND (54) ND (54) ND (110) ND (110) ND (220) ND (360) ND (54)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) 28 ND (220) ND (220) ND (220) ND (54) ND (430) ND (430) ND (110) ND (220) ND (220) ND (350) ND (54)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (17) ND (230) ND (57) ND (57) ND (460) ND (110) ND (230) ND (230) ND (380) ND (380) ND (57)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (220) ND (56) ND (440) ND (110) ND (220) ND (220) ND (370) ND (56)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (230) ND (380) ND (380) ND (58)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (220) ND (54) ND (54) ND (54) ND (220) ND (54) ND (220) ND (54) ND (54) ND (430) ND (110) ND (220) ND (360) ND (54)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (2100) ND (530) ND (1100) ND (1800) ND (1800) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) 22 ND (220) ND (220) ND (54) ND (110) ND (220) ND (220) ND (54) ND (110) ND (220) ND (54)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (110) ND (110) 150 ND (420) ND (420) ND (110) ND (110) ND (850) ND (210) ND (420) ND (420) ND (420) ND (700) ND (700) ND (110)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (210) ND (53) ND (53) 10 J ND (210) ND (53) ND (53) ND (430) ND (110) ND (210) ND (210) ND (350) ND (350) ND (53)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 31 ND (220) ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (360) ND (55)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (870) ND (220) ND (220) ND (220) ND (430) ND (430) ND (870) ND (430) ND (870) ND (1400) ND (1400) ND (220)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (240) ND (240) ND (59) ND (240) ND (59) ND (120) ND (120) ND (240) ND (390) ND (59)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) A4 ND (430) ND (430) ND (430) ND (110) ND (110) ND (210) ND (210) ND (430) ND (430) ND (710) ND (430) ND (110)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (18) ND (240) ND (59) ND (240) ND (59) ND (480) ND (120) ND (240) ND (240) ND (240) ND (390) ND (59)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (570) ND (140) 64 ND (570) ND (570) ND (140) ND (1100) ND (1100) ND (280) ND (570) ND (930) ND (140)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (220) ND (55) ND (220) ND (55) ND (440) ND (110) ND (220) ND (220) ND (360) ND (55)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 3000000 41000000 51000 - 66000 - 82000000	100000000 1800000 1800000 3400000 3400000 3400000 520000 1000000000 9800000 87000000 - 2700000 - 140000 - 1000000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) S2 J ND (1100) ND (270) ND (270) ND (2200) ND (540) ND (1100) ND (1100) ND (1100) ND (1100) ND (1100) ND (270) ND (2200) ND (540) ND (1100) ND (1800) ND (270) ND (810)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (54) ND (54) 24 ND (220) ND (220) ND (54) ND (54) ND (220) ND (54) ND (220) ND (54) ND (54) ND (54) ND (110) ND (110) ND (220) ND (360) ND (54) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) 28 ND (220) ND (220) ND (220) ND (54) ND (220) ND (54) ND (220) ND (54) ND (220) ND (54) ND (430) ND (110) ND (220) ND (350) ND (54) ND (54) ND (160)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (17) ND (230) ND (57) ND (230) ND (57) ND (110) ND (230) ND (57) ND (170)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (56) ND (56) ND (440) ND (110) ND (220) ND (370) ND (370) ND (56) ND (56) ND (170)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (230)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (220) ND (54) ND (54) ND (54) ND (54) ND (430) ND (110) ND (220) ND (220) ND (360) ND (54) ND (54) ND (54) ND (160)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (270) ND (270) ND (270) ND (2100) ND (2100) ND (530) ND (1100) ND (1800) ND (270) ND (270) ND (1800) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 22 ND (220) ND (220) ND (54) ND (54) ND (430) ND (110) ND (220) ND (220) ND (360) ND (54) ND (54) ND (160)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (110) ND (110) 150 ND (420) ND (420) ND (110) ND (110) ND (110) ND (850) ND (210) ND (420) ND (420) ND (700) ND (110) ND (320)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (210) ND (210) ND (53) ND (53) ND (430) ND (110) ND (210) ND (210) ND (350) ND (350) ND (53) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 31 ND (220) ND (220) ND (55) ND (440) ND (110) ND (220) ND (220) ND (360) ND (55) ND (160)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) 64 J ND (870) ND (870) ND (220) ND (220) ND (220) ND (370) ND (430) ND (430) ND (430) ND (4400) ND (220) ND (1400) ND (220) ND (220) ND (650)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (18) ND (240) ND (59) ND (240) ND (59) ND (120) ND (120) ND (240) ND (240) ND (240) ND (259) ND (120) ND (240) ND (259) ND (120) ND (259) ND (180)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) 44 ND (430) ND (430) ND (110) ND (110) ND (210) ND (210) ND (430) ND (710) ND (430) ND (710) ND (320)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (18) ND (240) ND (59) ND (59) ND (480) ND (120) ND (240) ND (240) ND (390) ND (390) ND (59) ND (180)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (140) ND (140) 64 ND (570) ND (570) ND (140) ND (1100) ND (280) ND (570) ND (570) ND (570) ND (570) ND (140) ND (1100) ND (280) ND (570) ND (930) ND (140) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (55) ND (55) ND (440) ND (110) ND (220) ND (220) ND (360) ND (55) ND (55) ND (160)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 3000000 41000000 - 51000 - 66000 - 82000000 110000	100000000 1800000 5200000 34000000 3400000 520000 1000000000 9800000 6800000 87000000 - 2700000 - 140000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) S2 J ND (1100) ND (1100) ND (270) ND (2200) ND (2200) ND (540) ND (1100) ND (1100) ND (1100) ND (1100) ND (1100) ND (1100) ND (270) ND (540) ND (1100) ND (1800) ND (270) ND (810) ND (810)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220) ND (54) ND (54) ND (440) ND (110) ND (220) ND (360) ND (54) ND (54) ND (160) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) 28 ND (220) ND (220) ND (54) ND (110) ND (220) ND (554) ND (160) ND (160)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (17) ND (230) ND (57) ND (230) ND (57) ND (110) ND (110) ND (110) ND (110) ND (170) ND (170)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (56) ND (56) ND (440) ND (110) ND (220) ND (370) ND (370) ND (56) ND (170) ND (170)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (230) ND (380) ND (380) ND (58) ND (170) ND (170)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) 100 ND (220) ND (220) ND (54) ND (430) ND (430) ND (110) ND (220) ND (360) ND (54) ND (54) ND (160) ND (160)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) 110 ND (1100) ND (270) ND (270) ND (270) ND (2100) ND (2100) ND (530) ND (1100) ND (1800) ND (270) ND (270) ND (1800) ND (800) ND (800)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (360) ND (220) ND (54) ND (54) 22 ND (220) ND (54) ND (54) ND (54) ND (430) ND (110) ND (220) ND (360) ND (54) ND (54) ND (160) ND (160)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) 150 ND (420) ND (420) ND (110) ND (420) ND (110) ND (850) ND (210) ND (420) ND (420) ND (700) ND (110) ND (320) ND (320)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (210) ND (210) ND (53) ND (53) ND (430) ND (110) ND (210) ND (210) ND (53) ND (160) ND (53) ND (160) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (55) ND (55) 31 ND (220) ND (55) ND (55) ND (440) ND (110) ND (220) ND (360) ND (360) ND (55) ND (160) ND (160)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (870) ND (220) ND (1700) ND (430) ND (430) ND (430) ND (4400) ND (220) ND (1400) ND (220) ND (650) ND (650)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (18) ND (240) ND (59) ND (240) ND (59) ND (120) ND (120) ND (240) ND (240) ND (259) ND (120) ND (240) ND (259) ND (120) ND (259) ND (180) ND (180)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) A4 ND (430) ND (430) ND (110) ND (110) ND (210) ND (210) ND (430) ND (710) ND (430) ND (710) ND (320) ND (320) ND (320)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (18) ND (240) ND (59) ND (480) ND (120) ND (240) ND (240) ND (240) ND (59) ND (180) ND (180) ND (180) ND (180)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (930) ND (570) ND (140) ND (140) 64 ND (570) ND (140) ND (1100) ND (280) ND (570) ND (570) ND (570) ND (140) ND (140) ND (140) ND (280) ND (570) ND (930) ND (140) ND (420) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (55) ND (55) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (55) ND (160) ND (160)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chlorophenol	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 3000000 41000000 - 51000 - 66000 - 82000000 110000 -	100000000 1800000 1800000 3400000 3400000 3400000 520000 1000000000 9800000 6800000 - 2700000 - 140000 - 100000000 6000000 -	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) ND (270) ND (270) ND (2200) ND (540) ND (1100) ND (1100) ND (1100) ND (1100) ND (1100) ND (270) ND (2200) ND (540) ND (1100) ND (1100) ND (1100) ND (1800) ND (270) ND (810) ND (810) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (54) ND (54) 24 ND (220) ND (54) ND (54) ND (54) ND (110) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (160) ND (54)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) 28 ND (220) ND (220) ND (54) ND (430) ND (430) ND (110) ND (220) ND (350) ND (54) ND (160) ND (160) ND (160) ND (54)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (230) ND (230) ND (57) ND (230) ND (57) ND (110) ND (230) ND (230) ND (57) ND (110) ND (230) ND (57) ND (110) ND (230) ND (57) ND (110) ND (110) ND (170) ND (170) ND (170) ND (170)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) 8.5 J ND (220) ND (56) ND (440) ND (110) ND (220) ND (370) ND (370) ND (56) ND (170) ND (170) ND (170) ND (56)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (230) ND (120) ND (230) ND (120)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 100 ND (220) ND (54) ND (54) ND (430) ND (430) ND (110) ND (220) ND (360) ND (54) ND (54) ND (160) ND (160) ND (54)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) 110 ND (1100) ND (270) ND (270) ND (270) ND (2100) ND (2100) ND (530) ND (1100) ND (1800) ND (270) ND (270) ND (270) ND (270) ND (1800) ND (1800) ND (800) ND (800) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (360) ND (220) ND (54) ND (54) 22 ND (220) ND (54) ND (54) ND (110) ND (220) ND (360) ND (360) ND (54) ND (160) ND (160) ND (160) ND (54)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) 150 ND (420) ND (420) ND (110) ND (850) ND (210) ND (420) ND (420) ND (700) ND (110) ND (320) ND (320) ND (320) ND (110)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (210) ND (53) ND (53) ND (430) ND (110) ND (210) ND (210) ND (53) ND (160) ND (53) ND (160) ND (53)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) 31 ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (360) ND (55) ND (160) ND (160) ND (155)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (870) ND (220) ND (1700) ND (430) ND (430) ND (430) ND (4400) ND (220) ND (1400) ND (220) ND (650) ND (650) ND (220)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (240) ND (59) ND (240) ND (59) ND (240) ND (59) ND (120) ND (240) ND (390) ND (390) ND (59) ND (180) ND (180) ND (180) ND (59)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (110) 44 ND (430) ND (430) ND (110) ND (110) ND (210) ND (210) ND (430) ND (710) ND (430) ND (710) ND (320) ND (320) ND (320) ND (110)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (240) ND (240) ND (59) ND (240) ND (59) ND (480) ND (120) ND (240) ND (390) ND (59) ND (180) ND (180) ND (180) ND (180) ND (59)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (570) ND (570) ND (140) 64 ND (570) ND (140) ND (1100) ND (280) ND (570) ND (570) ND (570) ND (140) ND (140) ND (280) ND (570) ND (420) ND (420) ND (420) ND (140)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (55) ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (160) ND (55)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 5800000 41000000 - 51000 - 66000 - 82000000 110000 - 1100000	100000000 1800000 1800000 3400000 3400000 3400000 520000 1000000000 9800000 87000000 - 2700000 - 140000 - 1000000000	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) S2 J ND (1100) ND (270) ND (270) ND (2200) ND (540) ND (1100) ND (270) ND (810) ND (810) ND (270) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) 24 ND (220) ND (54) ND (220) ND (54) ND (110) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) 28 ND (220) ND (220) ND (54) ND (430) ND (110) ND (220) ND (350) ND (54) ND (160) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (54)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (57) ND (57) ND (230) ND (57) ND (230) ND (57) ND (460) ND (110) ND (230) ND (380) ND (57) ND (380) ND (57) ND (170) ND (170) ND (170) ND (170) ND (57) ND (57)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) ND (220) ND (56) ND (440) ND (110) ND (220) ND (370) ND (56) ND (170) ND (170) ND (170) ND (56) ND (170) ND (56) ND (220)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (230) ND (230) ND (58) ND (460) ND (120) ND (230) ND (380) ND (58) ND (170) ND (170) ND (58) ND (170) ND (58) ND (170) ND (58) ND (170) ND (58) ND (170) ND (170) ND (58) ND (230)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) ND (220) ND (54) ND (430) ND (430) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (160) ND (54) ND (160)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) ND (270) ND (1100) ND (270) ND (270) ND (2100) ND (230) ND (1100) ND (1100) ND (1800) ND (1800) ND (800) ND (800) ND (270) ND (270)	ND (110) ND (160) ND (160) ND (160) ND (360) ND (360) ND (220) ND (54) ND (54) 22 ND (220) ND (54) ND (54) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (160) ND (54) ND (54)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) 150 ND (420) ND (420) ND (110) ND (850) ND (210) ND (420) ND (700) ND (110) ND (320) ND (320) ND (320) ND (110) ND (420)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (210) ND (53) ND (53) ND (430) ND (110) ND (210) ND (210) ND (53) ND (160) ND (53) ND (160) ND (53) ND (160) ND (53) ND (160) ND (53) ND (53) ND (160) ND (53) ND (160) ND (53) ND (53) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) ND (55) ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (155) ND (160) ND (55) ND (220)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (220) ND (1700) ND (430) ND (430) ND (4400) ND (220) ND (1400) ND (220) ND (1400) ND (220) ND (650) ND (650) ND (650) ND (220) ND (870)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (240) ND (59) ND (470) ND (240) ND (240) ND (390) ND (390) ND (59) ND (180) ND (59) ND (59) ND (180) ND (59) ND (59) ND (59) ND (180) ND (59) ND (59) ND (59)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) 44 ND (430) ND (430) ND (110) ND (210) ND (210) ND (430) ND (710) ND (430) ND (710) ND (320) ND (320) ND (320) ND (110) ND (430)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (18) ND (240) ND (59) ND (480) ND (240) ND (240) ND (240) ND (240) ND (390) ND (390) ND (59) ND (180) ND (180) ND (180) ND (59) ND (240)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (570) ND (570) ND (140) 64 ND (570) ND (140) ND (1100) ND (280) ND (570) ND (930) ND (570) ND (140) ND (140) ND (280) ND (570) ND (420) ND (420) ND (420) ND (140) ND (570)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (160) ND (55) ND (55) ND (160) ND (55) ND (160) ND (55)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitroaniline 4-Nitrophenol	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 3000000 51000 - 66000 - 82000000 110000 - 1100000 - 1100000	100000000 1800000 1800000 3400000 3400000 3400000 520000 100000000 87000000 - 2700000 - 100000000 6000000 - 7000000 -	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) S2 J ND (1100) ND (270) ND (2200) ND (2200) ND (540) ND (1100) ND (1100) ND (270) ND (810) ND (810) ND (270) ND (1100) ND (270) ND (810) ND (270) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220) ND (54) ND (54) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (160) ND (54) ND (220) ND (54) ND (160) ND (54) ND (220) ND (360)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) 28 ND (220) ND (54) ND (54) ND (54) ND (110) ND (220) ND (350) ND (54) ND (160) ND (160) ND (54) ND (54) ND (54) ND (160) ND (54) ND (54) ND (554)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57) ND (57) ND (230) ND (57) ND (460) ND (110) ND (230) ND (57) ND (380) ND (57) ND (170) ND (170) ND (170) ND (170) ND (170) ND (230) ND (57) ND (170) ND (170) ND (170) ND (170) ND (230) ND (380) ND (57)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) ND (220) ND (56) ND (440) ND (110) ND (220) ND (370) ND (56) ND (170) ND (170) ND (56) ND (170) ND (56) ND (220) ND (370) ND (56) ND (170) ND (56) ND (170) ND (56) ND (220) ND (370)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (230) ND (380) ND (58) ND (170) ND (170) ND (58) ND (230) ND (380) ND (58) ND (170) ND (58) ND (170) ND (58) ND (230) ND (380)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (220) ND (220) ND (54) ND (430) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (160) ND (54) ND (56)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) 110 ND (1100) ND (270) ND (270) ND (2100) ND (230) ND (1100) ND (1100) ND (1800) ND (270) ND (800) ND (800) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (220) ND (54) ND (430) ND (110) ND (220) ND (54) ND (54) ND (54) ND (160) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (160) ND (54) ND (160) ND (54) ND (160) ND (54) ND (220) ND (360)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) 150 ND (420) ND (420) ND (110) ND (850) ND (210) ND (420) ND (700) ND (110) ND (320) ND (320) ND (110) ND (420) ND (110) ND (320) ND (110) ND (320) ND (110) ND (420) ND (700)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (210) ND (53) ND (53) ND (430) ND (110) ND (210) ND (350) ND (53) ND (160) ND (53) ND (350)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (55) ND (55) 31 ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (55) ND (160) ND (55) ND (220) ND (55) ND (160) ND (55) ND (160) ND (55) ND (220) ND (360)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (220) ND (1700) ND (430) ND (430) ND (4400) ND (220) ND (1400) ND (220) ND (650) ND (650) ND (870) ND (870) ND (870) ND (870) ND (650) ND (650) ND (870) ND (870) ND (1400)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (18) ND (240) ND (390) ND (180) ND (180) ND (59) ND (180) ND (59) ND (180) ND (59) ND (180) ND (59) ND (390) ND (59) ND (390)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) 44 ND (430) ND (430) ND (110) ND (210) ND (210) ND (430) ND (710) ND (320) ND (110) ND (320) ND (320) ND (110) ND (320) ND (110) ND (430) ND (710) ND (320) ND (110) ND (320) ND (110) ND (430) ND (710)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (240) ND (59) ND (480) ND (240) ND (240) ND (240) ND (390) ND (59) ND (180) ND (180) ND (180) ND (180) ND (180) ND (59) ND (390)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (570) ND (570) ND (570) ND (140) 64 ND (570) ND (140) ND (1100) ND (280) ND (570) ND (930) ND (140) ND (420) ND (420) ND (420) ND (570) ND (570) ND (140) ND (570) ND (420) ND (570) ND (930)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (55) ND (160) ND (55) ND (220) ND (55)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitrophenol Acenaphthene	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 5800000 41000000 - 51000 - 66000 - 82000000 110000 - 1100000	100000000 1800000 1800000 3400000 3400000 3400000 520000 1000000000 9800000 6800000 - 2700000 - 140000 - 100000000 6000000 -	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) S2 J ND (1100) ND (270) ND (2200) ND (2200) ND (540) ND (1100) ND (1100) ND (270) ND (810) ND (810) ND (270) ND (1100) ND (1100) ND (1800) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (220) ND (54) ND (54) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (160) ND (54) ND (160) ND (54) ND (160) ND (560) ND (560) ND (560) ND (560) ND (160) ND (160) ND (160) ND (160) ND (160) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (54) ND (54) 28 ND (220) ND (54) ND (54) ND (54) ND (110) ND (220) ND (350) ND (54) ND (160) ND (160) ND (54) ND (54) ND (54) ND (160) ND (54) ND (160) ND (54) ND (54) ND (160) ND (54) ND (54) ND (54) ND (160) ND (54) ND (554)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57) ND (57) ND (230) ND (57) ND (460) ND (110) ND (230) ND (57) ND (170) ND (170) ND (170) ND (170) ND (170) ND (230) ND (57) ND (170) ND (170) ND (170) ND (170) ND (380) ND (57) ND (380) ND (57)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (220) ND (220) ND (56) ND (440) ND (110) ND (220) ND (56) ND (370) ND (56) ND (170) ND (170) ND (56) ND (220) ND (56) ND (170) ND (56) ND (170) ND (56) ND (170) ND (56) ND (220) ND (370) ND (56) ND (170) ND (570) ND (570) ND (570) ND (370) ND (370) 28	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (17) ND (230) ND (230) ND (230) ND (230) ND (230) ND (380) ND (380) ND (58) ND (170) ND (58) ND (380) ND (58) ND (170) ND (58) ND (380) ND (58) ND (170) ND (58) ND (380) ND (380) ND (380) ND (171)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (220) ND (220) ND (54) ND (430) ND (110) ND (220) ND (54) ND (54) ND (160) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (220) ND (360) 20	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) 110 ND (1100) ND (270) ND (270) ND (270) ND (2100) ND (2100) ND (530) ND (1100) ND (1800) ND (270) ND (800) ND (800) ND (270) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (220) ND (220) ND (54) ND (430) ND (110) ND (220) ND (54) ND (160) ND (160) ND (160) ND (54) ND (220) ND (54) ND (160) ND (54) ND (160) ND (54) ND (220) ND (54) ND (360) ND (54) ND (160) ND (54) ND (360) ND (54) ND (360) ND (54) ND (360) ND (54) ND (360) ND (360) ND (360)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) 150 ND (420) ND (420) ND (110) ND (850) ND (210) ND (420) ND (700) ND (110) ND (320) ND (320) ND (110) ND (420) ND (110) ND (320) ND (110) ND (420) ND (700) ND (110) ND (320) ND (110) ND (420) ND (700) ND (1700) ND (700)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (53) ND (210) ND (53) ND (430) ND (110) ND (350) ND (53) ND (53) ND (160) ND (53) ND (160) ND (53) ND (53) ND (160) ND (530) ND (160) ND (530) ND (160) ND (350) ND (160)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (55) ND (55) 31 ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (55) ND (220) ND (55) ND (160) ND (55) ND (160) ND (55) ND (220) ND (55) ND (160) ND (55) ND (160) ND (55) ND (160) ND (560) ND (160) ND (160) ND (160) ND (160)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (220) ND (1700) ND (430) ND (430) ND (4400) ND (220) ND (1400) ND (220) ND (650) ND (650) ND (870) ND (870) ND (870) ND (870) ND (650) ND (650) ND (650) ND (870) ND (1400) 95	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (59) ND (59) ND (240) ND (59) ND (120) ND (240) ND (240) ND (390) ND (59) ND (180) ND (180) ND (59) ND (180) ND (59) ND (180) ND (59) ND (180) ND (59) ND (390) ND (59) ND (390) ND (59) ND (390) ND (59) ND (390) ND (390) ND (390) ND (18)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) 44 ND (430) ND (110) ND (110) ND (210) ND (210) ND (430) ND (710) ND (320) ND (110) ND (320) ND (320) ND (110) ND (430) ND (110) ND (320) ND (110) ND (320) ND (110) ND (430) ND (710) ND (320) ND (110) ND (430) ND (710) ND (430) ND (710)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (240) ND (59) ND (480) ND (240) ND (240) ND (390) ND (59) ND (180) ND (180) ND (180) ND (59) ND (390) ND (59) ND (390) ND (390) ND (390) ND (390) ND (18)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (570) ND (570) ND (570) ND (140) 64 ND (570) ND (140) ND (1100) ND (280) ND (570) ND (930) ND (140) ND (420) ND (420) ND (420) ND (570) ND (570) ND (140) ND (570) ND (420) ND (570) ND (930) ND (140) ND (570) ND (930) ND (140) ND (570) ND (930) ND (140) ND (570) ND (930) 13 J	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (55) ND (220) ND (55) ND (160) ND (55) ND (160) ND (55) ND (220) ND (360) ND (55) ND (160) ND (55) ND (160) ND (55) ND (220) ND (360) ND (55) ND (220) ND (360) ND (360)
Semi-Volatile Organic Compounds (ug/kg) 2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (o-Cresol) 2-Nitroaniline 2-Nitrophenol 3&4-Methylphenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitroaniline 4-Nitroaniline	82000000 820000 2500000 16000000 16000000 74000 15000 60000000 3000000 51000 - 66000 - 82000000 110000 - 1100000 - 1100000	100000000 1800000 1800000 3400000 3400000 3400000 520000 100000000 87000000 - 2700000 - 100000000 6000000 - 7000000 -	ND (540) ND (810) ND (810) ND (810) ND (810) ND (1800) ND (1100) ND (1100) ND (270) S2 J ND (1100) ND (270) ND (2200) ND (2200) ND (540) ND (1100) ND (1100) ND (270) ND (810) ND (810) ND (270) ND (1100) ND (270) ND (810) ND (270) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (54) 24 ND (220) ND (54) ND (54) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (160) ND (54) ND (220) ND (54) ND (160) ND (54) ND (220) ND (360)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (220) ND (220) ND (54) 28 ND (220) ND (54) ND (54) ND (54) ND (110) ND (220) ND (350) ND (54) ND (160) ND (160) ND (54) ND (54) ND (54) ND (160) ND (54) ND (54) ND (554)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (57) ND (57) ND (230) ND (57) ND (460) ND (110) ND (230) ND (57) ND (380) ND (57) ND (170) ND (170) ND (170) ND (170) ND (170) ND (230) ND (57) ND (170) ND (170) ND (170) ND (170) ND (230) ND (380) ND (57)	ND (110) ND (170) ND (170) ND (170) ND (170) ND (370) ND (220) ND (220) ND (56) ND (56) ND (220) ND (56) ND (440) ND (110) ND (220) ND (370) ND (56) ND (170) ND (170) ND (56) ND (170) ND (56) ND (220) ND (370) ND (56) ND (170) ND (56) ND (170) ND (56) ND (220) ND (370)	ND (120) ND (170) ND (170) ND (170) ND (170) ND (380) ND (230) ND (230) ND (58) ND (58) ND (230) ND (380) ND (58) ND (170) ND (170) ND (58) ND (230) ND (380) ND (58) ND (170) ND (58) ND (170) ND (58) ND (230) ND (380)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (220) ND (220) ND (54) ND (430) ND (110) ND (220) ND (360) ND (54) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (160) ND (54) ND (56)	ND (530) ND (800) F1 ND (800) F1 ND (800) ND (800) ND (1800) F1 ND (1100) ND (1100) ND (270) 110 ND (1100) ND (270) ND (270) ND (2100) ND (230) ND (1100) ND (1100) ND (1800) ND (270) ND (800) ND (800) ND (1100)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (54) ND (220) ND (54) ND (430) ND (110) ND (220) ND (54) ND (54) ND (54) ND (160) ND (160) ND (160) ND (54) ND (54) ND (160) ND (54) ND (160) ND (54) ND (160) ND (54) ND (160) ND (54) ND (220) ND (360)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (320) ND (700) F1 ND (420) ND (420) ND (110) 150 ND (420) ND (420) ND (110) ND (850) ND (210) ND (420) ND (700) ND (110) ND (320) ND (320) ND (110) ND (420) ND (110) ND (320) ND (110) ND (320) ND (110) ND (420) ND (700)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (350) ND (210) ND (53) ND (53) ND (210) ND (53) ND (53) ND (430) ND (110) ND (210) ND (350) ND (53) ND (160) ND (53) ND (350)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (55) ND (55) 31 ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (55) ND (160) ND (55) ND (220) ND (55) ND (160) ND (55) ND (160) ND (55) ND (220) ND (360)	ND (430) ND (650) ND (650) ND (650) ND (650) ND (1400) ND (870) ND (220) ND (220) 64 J ND (870) ND (220) ND (1700) ND (430) ND (430) ND (4400) ND (220) ND (1400) ND (220) ND (650) ND (650) ND (870) ND (870) ND (870) ND (870) ND (650) ND (650) ND (870) ND (870) ND (1400)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (18) ND (240) ND (390) ND (180) ND (180) ND (59) ND (180) ND (59) ND (180) ND (59) ND (180) ND (59) ND (390) ND (59) ND (390)	ND (210) ND (320) ND (320) ND (320) ND (320) ND (710) ND (430) ND (430) ND (110) 44 ND (430) ND (430) ND (110) ND (210) ND (210) ND (430) ND (710) ND (320) ND (110) ND (320) ND (320) ND (110) ND (320) ND (110) ND (430) ND (710) ND (320) ND (110) ND (320) ND (110) ND (430) ND (710)	ND (120) ND (180) ND (180) ND (180) ND (180) ND (390) ND (240) ND (240) ND (59) ND (59) ND (240) ND (59) ND (480) ND (240) ND (240) ND (240) ND (390) ND (59) ND (180) ND (180) ND (180) ND (180) ND (180) ND (59) ND (390)	ND (280) ND (420) ND (420) ND (420) ND (420) ND (570) ND (570) ND (570) ND (140) 64 ND (570) ND (140) ND (1100) ND (280) ND (570) ND (930) ND (140) ND (420) ND (420) ND (420) ND (570) ND (570) ND (140) ND (570) ND (420) ND (570) ND (930)	ND (110) ND (160) ND (160) ND (160) ND (160) ND (360) ND (220) ND (220) ND (55) A6 ND (220) ND (220) ND (55) ND (440) ND (110) ND (220) ND (360) ND (55) ND (160) ND (160) ND (55) ND (160) ND (55) ND (220) ND (55)

APPENDIX - B
SUMMARY OF SOIL ANALYTICAL RESULTS
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA

Location	IDEM	IDEM	SB-01	SB-01	SB-02	SB-02	SB-03	SB-03	SB-04	SB-04	SB-04	SB-05	SB-05	SB-05	SB-06	SB-06	SB-07	SB-07	SB-08	SB-08
Sample Date	Com/Ind	Excavation	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/07/2019	
Sample Type	Direct	Direct	N	N	N	N	N	N	N	FD	N	N	N	FD	N	N	N	N	N	N
Sample Depth (bgs)	Contact	Contact	0 - 2 (ft)	5 - 7 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	6 - 8 (ft)	6 - 8 (ft)	0 - 2 (ft)	2 - 4 (ft)	0 - 2 (ft)	4 - 6 (ft)	0 - 2 (ft)	2 - 4 (ft)
F (-G-)			- (-)	- (-/	- (-/	- (-/	- (-/	(- /	- (-/	- (- /	(-/	- (-/	- (-)	- (- /	- (- /	(-7	- (- /	- (-/	- (-/	
Anthracene	100000000	100000000	130	49	14 J	ND (17)	180	ND (17)	65	86	74	230	4.8 J	8.5 J	360	ND (18)	270	4.6 J	49	210
Atrazine	100000	5200000	ND (1100)	ND (220)	ND (220)	ND (230)	ND (220)	ND (230)	ND (220)	ND (1100)	ND (220)	ND (420)	ND (210)	ND (220)	ND (870)	ND (240)	ND (430)	ND (240)	ND (570)	ND (220)
Benzaldehyde	1200000	1200000	ND (540)	ND (110)	ND (110)	ND (110)	ND (110)	ND (120)	ND (110)	ND (530)	ND (110)	ND (210)	ND (110)	ND (110)	ND (430)	ND (120)	ND (210)	ND (120)	69 J	ND (110)
Benzo(a)anthracene	210000	12000000	220	ND (16)	62	1À J	280	ND (17)	250	280	200	7 4 0	29	5 0	1100	13 J [′]	830	16 J ´	160	440
Benzo(a)pyrene	21000	500000	250	9 7 ´	58	20	190	ND (17)	210	220	190	710	37	58	700	15 J	1400	19	200	470
Benzo(b)fluoranthene	210000	12000000	250	58	120	22	380	ND (17)	410	430	230	1100	60	100	1500	15 J	1900	29	340	690
Benzo(g,h,i)perylene	-	-	360	450	67	14 J	97	ND (17)	200	240	150	640	37	67	600	12 J	1400	17 J	170	400
Benzo(k)fluoranthene	2100000	100000000	ND (81)	ND (16)	29	ND (17)	150	ND (17)	130	130	120	380	20	26	390	ND (18)	680	9.9 J	89	260
Biphenyl	200000	1100000	ND (270)	ND (54)	ND (54)	ND (57)	ND (56)	ND (58)	27 J	ND (270)	ND (54)	ND (110)	ND (53)	ND (55)	ND (220)	ND (59)	ND (110)	ND (59)	ND (140)	ND (55)
bis(2-Chloroethoxy)methane	2500000	5200000	ND (540)	ND (110)	ND (110)	ND (110)	ND (110)	ND (120)	ND (110)	ND (530)	ND (110)	ND (210)	ND (110)	ND (110)	ND (430)	ND (120)	ND (210)	ND (120)	ND (280)	ND (110)
bis(2-Chloroethyl)ether	10000	810000	ND (540)	ND (110)	ND (110)	ND (110)	ND (110)	ND (120)	ND (110)	ND (530)	ND (110)	ND (210)	ND (110)	ND (110)	ND (430)	ND (120)	ND (210)	ND (120)	ND (280)	ND (110)
bis(2-Ethylhexyl)phthalate	1600000	34000000	ND (380)	ND (76)	56 J	ND (80)	140	ND (81)	400	ND (370) F1	100 F1	ND (150)	ND (75)	ND (77)	330	ND (83)	170	ND (83)	ND (200)	ND (76)
Butyl benzylphthalate	12000000	100000000	ND (380)	ND (76)	ND (75)	ND (80)	ND (78)	ND (81)	ND (76)	ND (370)	ND (75)	ND (150)	ND (75)	ND (77)	ND (300)	ND (83)	ND (150)	ND (83)	ND (200)	ND (76)
Caprolactam	100000000	100000000	ND (1800)	ND (360)	ND (350)	ND (380)	ND (370)	ND (380)	ND (360)	ND (1800)	ND (360)	ND (700)	ND (350)	ND (360)	ND (1400)	ND (390)	ND (710)	ND (390)	ND (930)	ND (360)
Carbazole	-	-	ND (270)	ND (54)	ND (54)	ND (57)	92	ND (58)	35 J	ND (270)	39 J	1 2 0	ND (53)	ND (55)	ND (220)	ND (59)	110	ND (59)	ND (140)	95
Chrysene	21000000	100000000	280	ND (16)	88	17	330	ND (17)	330	380	220	790	43	61	1400	13 J [′]	1100	24	220	550
Dibenz(a,h)anthracene	21000	1200000	ND (81)	ND (16)	ND (16)	ND (17)	33	ND (17)	65	ND (80)	36	120	13 J	23	180	ND (18)	370	ND (18)	44	110
Dibenzofuran	1000000	1900000	ND (270)	ND (54)	ND (54)	ND (57)	36 J	ND (58)	59	82 J	20 J	97 J	ND (53)	ND (55)	65 J	ND (59)	63 J	ND (59)	39 J	59
Diethyl phthalate	100000000	100000000	ND (380)	ND (76)	ND (75)	ND (80)	ND (78)	ND (81)	ND (76)	ND (370)	ND (75)	ND (150)	ND (75)	ND (77)	ND (300)	ND (83)	ND (150)	ND (83)	ND (200)	ND (76)
Dimethyl phthalate	-	-	ND (380)	ND (76)	ND (75)	ND (80)	ND (78)	ND (81)	ND (76)	ND (370)	ND (75)	ND (150)	ND (75)	ND (77)	ND (300)	ND (83)	ND (150)	ND (83)	70 J	ND (76)
Di-n-butylphthalate	82000000	100000000	ND (380)	ND (76)	ND (75)	ND (80)	ND (78)	ND (81)	ND (76)	ND (370)	ND (75)	ND (150)	ND (75)	ND (77)	ND (300)	ND (83)	ND (150)	ND (83)	ND (200)	ND (76)
Di-n-octyl phthalate	8200000	18000000	ND (380)	ND (76)	ND (75)	ND (80)	ND (78)	ND (81)	ND (76)	ND (370)	ND (75)	ND (150)	ND (75)	ND (77)	ND (300)	ND (83)	ND (150)	ND (83)	ND (200)	ND (76)
Fluoranthene	30000000	68000000	570	20	130	37	850	6.9 J	590	730	470	1600	42	77	4300	23	1100	32	370	990
Fluorene	30000000	68000000	55 J	ND (16)	ND (16)	ND (17)	16 J	ND (17)	15 J	32 J	28	76	ND (16)	4.9 J	76	ND (18)	46	ND (18)	ND (42)	78
Hexachlorobenzene	9600	630000	ND (81)	ND (16)	ND (16)	ND (17)	ND (17)	ND (17)	ND (16)	ND (80)	ND (16)	ND (32)	ND (16)	ND (16)	ND (65)	ND (18)	ND (32)	ND (18)	ND (42)	ND (16)
Hexachlorobutadiene	17000	17000	ND (270)	ND (54)	ND (54)	ND (57)	ND (56)	ND (58)	ND (54)	ND (270)	ND (54)	ND (110)	ND (53)	ND (55)	ND (220)	ND (59)	ND (110)	ND (59)	ND (140)	ND (55)
Hexachlorocyclopentadiene	7500	16000	ND (1800)	ND (360)	ND (350)	ND (380)	ND (370)	ND (380)	ND (360)	ND (1800) F1	ND (360) F1	ND (700) F1	ND (350)	ND (360)	ND (1400)	ND (390)	ND (710)	ND (390)	ND (930)	ND (360)
Hexachloroethane	80000	1100000	ND (270)	ND (54)	ND (54)	ND (57)	ND (56)	ND (58)	ND (54)	ND (270)	ND (54)	ND (110)	ND (53)	ND (55)	ND (220)	ND (59)	ND (110)	ND (59)	ND (140)	ND (55)
Indeno(1,2,3-cd)pyrene	210000	12000000	150	ND (16)	44	ND (17)	93	ND (17)	150	180	120	480	28	51	510	13 J	1200	13 J	140	330
Isophorone	24000000	100000000	ND (270)	ND (54)	ND (54)	ND (57)	ND (56)	ND (58)	ND (54)	ND (270)	ND (54)	ND (110)	ND (53)	ND (55)	ND (220)	ND (59)	ND (110)	ND (59)	ND (140)	ND (55)
Naphthalene	170000	3100000	86	11 J	24	ND (17)	13 J	ND (17)	100	150	22	200	10 J	23	82	ND (18)	77	ND (18)	82	100
Nitrobenzene	220000	3100000	ND (540)	ND (110)	ND (110)	ND (110)	ND (110)	ND (120)	ND (110)	ND (530)	ND (110)	ND (210)	ND (110)	ND (110)	ND (430)	ND (120)	ND (210)	ND (120)	ND (280)	ND (110)
N-Nitrosodi-n-propylamine	3300	180000	ND (270)	ND (54)	ND (54)	ND (57)	ND (56)	ND (58)	ND (54)	ND (270)	ND (54)	ND (110)	ND (53)	ND (55)	ND (220)	ND (59)	ND (110)	ND (59)	ND (140)	ND (55)
N-Nitrosodiphenylamine	4700000	100000000	ND (270)	ND (54)	ND (54)	ND (57)	ND (56)	ND (58)	ND (54)	ND (270)	ND (54)	ND (110)	ND (53)	ND (55)	ND (220)	ND (59)	ND (110)	ND (59)	ND (140)	ND (55)
Pentachlorophenol	40000	2600000	ND (810)	ND (160)	ND (160)	ND (170)	ND (170)	ND (170)	ND (160)	ND (800) F1	ND (160)	ND (320)	ND (160)	ND (160)	ND (650)	ND (180)	ND (320)	ND (180)	ND (420)	ND (160)
Phenanthrene	-	-	510	28	71	ND (17)	670	ND (17)	330	460	300	1000	28	65	940	15 J	520	20	280	720
Phenol	100000000	100000000	ND (270)	ND (54)	ND (54)	ND (57)	ND (56)	ND (58)	ND (54)	ND (270)	ND (54)	ND (110)	ND (53)	ND (55)	ND (220)	ND (59)	ND (110)	ND (59)	23 J	ND (55)
Pyrene	23000000	51000000	530	51	150	28	620	7.1 J	530	660	380	1300	43	73	3400	22	1100	30	310	810
Waladia Opposita O																				
Volatile Organic Compounds (ug/kg)	0.40000	040000	ND (000)	ND (070)	ND (070)	ND (000)	ND (222)	ND (222)	ND (000) ±	ND (CCC)	ND (050)	05 I±	ND (000) *	ND (070) *	ND (000) #	ND (000) ±	ND (000) *	ND (000) *	ND (0.40) *	ND (000) *
1,1,1-Trichloroethane	640000	640000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260) *	ND (260)	ND (250)	65 J*	ND (280) *	ND (270) *	ND (260) *	ND (330) *	ND (300) *	ND (330) *	ND (340) *	ND (280) *
1,1,2,2-Tetrachloroethane	27000	1900000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250) F2	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,1,2-Trichloroethane	6300	35000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,1-Dichloroethane	160000	1700000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,1-Dichloroethene	1000000	1200000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,2,4-Trichlorobenzene	260000	400000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,2-Dibromo-3-chloropropane (DBCP)	640	86000	ND (560) *	ND (550) *	ND (540) *		ND (570) *	ND (590) *	ND (520) *	ND (510) *	ND (490) *F2	ND (520) *	. ,				ND (600) *	ND (660) *	ND (670) *	ND (560) *
1,2-Dibromoethane (Ethylene Dibromide)	1600	180000	ND (280) *	ND (270) *	ND (270) *	` ,	ND (290) *	ND (290) *	ND (260) *	ND (260) *	ND (250) *	ND (260) *	ND (280) *	ND (270) *	` ,	, ,	` ,	ND (330) *	ND (340) *	ND (280) *
1,2-Dichlorobenzene	380000	380000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,2-Dichloroethane	20000	730000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250) F1	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,2-Dichloropropane	66000	360000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,3-Dichlorobenzene	-	-	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
1,4-Dichlorobenzene	110000	16000000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
2-Butanone (Methyl Ethyl Ketone)	28000000	28000000	ND (1100)	` ,	ND (1100)	ND (1200)	, ,	ND (1200)	ND (1000)	ND (1000)	ND (990)	ND (1000)	ND (1100)	ND (1100)	, ,	, ,	ND (1200)	, ,	, ,	` ,
2-Hexanone	1300000	3300000	ן אט (1100)	אט (1100)	ND (1100)	ND (1200)	אט (1100)	ND (1200)	אט (1000)	ND (1000)	ND (990)	ND (1000)	אט (1100)	(1100) טא	ND (1000)	ทบ (1300)	ND (1200)	אט (1300)	(1300) אט (1300	(1100) טא

APPENDIX - B
SUMMARY OF SOIL ANALYTICAL RESULTS
ARCELORMITTAL - INDIANA HARBOR LONG CARBON
EAST CHICAGO, INDIANA

Location	IDEM	IDEM	SB-01	SB-01	SB-02	SB-02	SB-03	SB-03	SB-04	SB-04	SB-04	SB-05	SB-05	SB-05	SB-06	SB-06	SB-07	SB-07	SB-08	SB-08
Sample Date	Com/Ind	Excavation	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/05/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/06/2019	03/07/2019	03/07/2019
Sample Type	Direct	Direct	N	N	N	N	N	N	N	FD	N	N	N	FD	N	N	N	N	N	N
Sample Depth (bgs)	Contact	Contact	0 - 2 (ft)	5 - 7 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	0 - 2 (ft)	6 - 8 (ft)	0 - 2 (ft)	6 - 8 (ft)	6 - 8 (ft)	0 - 2 (ft)	2 - 4 (ft)	0 - 2 (ft)	4 - 6 (ft)	0 - 2 (ft)	2 - 4 (ft)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	3400000	3400000	ND (1100)	ND (1100)	ND (1100)	ND (1200)	ND (1100)	ND (1200)	ND (1000)	ND (1000)	ND (990)	ND (1000)	ND (1100)	ND (1100)	ND (1000)	ND (1300)	ND (1200)	ND (1300)	(/	ND (1100)
Acetone	100000000	100000000	ND (1100)	ND (1100)	ND (1100)	ND (1200)	ND (1100)	ND (1200)	ND (1000)	ND (1000)	ND (990)	ND (1000)	ND (1100)	ND (1100)	ND (1000)	ND (1300)	ND (1200)	ND (1300)	ND (1300)	ND (1100)
Benzene	51000	1800000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	8.4 J	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	15 J	ND (280)
Bromodichloromethane	13000	930000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Bromoform	860000	920000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260) *	ND (260)	ND (250)	ND (260) *	ND (280) *	ND (270) *	ND (260) *	ND (330) *	ND (300) *	ND (330) *	ND (340) *	ND (280) *
Bromomethane (Methyl Bromide)	30000	160000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Carbon disulfide	740000	740000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250) F2	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Carbon tetrachloride	29000	460000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260) *	ND (260)	ND (250)	ND (260) *	ND (280) *	ND (270) *	ND (260) *	ND (330) *	ND (300) *	ND (330) *	ND (340) *	ND (280) *
Chlorobenzene	760000	760000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Chloroethane	2100000	2100000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260) F2	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Chloroform (Trichloromethane)	14000	1900000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Chloromethane (Methyl Chloride)	460000	1300000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
cis-1,2-Dichloroethene	2300000	2400000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
cis-1,3-Dichloropropene	-	-	ND (280) *	ND (270) *	ND (270) *	ND (300) *	ND (290) *	ND (290) *	ND (260) *	ND (260) *	ND (250) *	ND (260) *	ND (280) *	ND (270) *	ND (260) *	ND (330) *	ND (300) *	ND (330) *	ND (340) *	ND (280) *
Cyclohexane	120000	120000	ND (560)	ND (550)	ND (540)	ND (600)	ND (570)	ND (590)	ND (520)	ND (510)	ND (490)	ND (520)	ND (560)	ND (540)	ND (520)	ND (660)	ND (600)	ND (660)	ND (670)	ND (560)
Dibromochloromethane	390000	800000	ND (280) *	ND (270) *	ND (270) *	ND (300) *	ND (290) *	ND (290) *	ND (260) *	ND (260) *	ND (250) *	ND (260) *	ND (280) *	ND (270) *	ND (260) *	ND (330) *	ND (300) *	ND (330) *	ND (340) *	ND (280) *
Dichlorodifluoromethane (CFC-12)	370000	850000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Ethylbenzene	250000	480000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	26 J	18 J	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	19 J	ND (280)
Isopropylbenzene (Cumene)	270000	270000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Methyl acetate	29000000	29000000	ND (1400)	ND (1400)	ND (1300)	ND (1500)	ND (1400)	ND (1500)	ND (1300)	ND (1300)	ND (1200) F1	ND (1300)	ND (1400)	ND (1400)	2100	ND (1700)	ND (1500)	ND (1600)	900 J	ND (1400)
Methyl cyclohexane	-	-	ND (560)	ND (550)	ND (540)	ND (600)	ND (570)	ND (590)	ND (520)	ND (510)	120 J	80 J	ND (560)	ND (540)	ND (520)	ND (660)	ND (600)	ND (660)	ND (670)	ND (560)
Methyl Tert Butyl Ether	2100000	8900000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Methylene chloride	3200000	3300000	ND (560)	ND (550)	ND (540)	ND (600)	ND (570)	ND (590)	ND (520)	ND (510)	ND (490)	ND (520)	ND (560)	ND (540)	ND (520)	ND (660)	ND (600)	ND (660)	ND (670)	ND (560)
Naphthalene	170000	3.10E+06	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	170 J*	ND (260)	ND (250)	190 J*	ND (280)*	ND (270)*	ND (260)*	ND (330)*	ND (300)*	ND (330)*	ND (340)*	ND (280)*
Styrene	870000	870000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Tetrachloroethene	170000	170000	77 J	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	33 J	29 J	ND (250)	190 J	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	51 J	ND (280)
Toluene	820000	820000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	110 J	83 J	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
trans-1,2-Dichloroethene	1900000	1900000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
trans-1,3-Dichloropropene	-	-	ND (280) *	ND (270) *	ND (270) *	ND (300) *	ND (290) *	ND (290) *	ND (260) *	ND (260) *	ND (250) *	ND (260) *	ND (280) *	ND (270) *	ND (260) *	ND (330) *	ND (300) *	ND (330) *	ND (340) *	ND (280) *
Trichloroethene	19000	95000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250) F1	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Trichlorofluoromethane (CFC-11)	1200000	1200000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Trifluorotrichloroethane (Freon 113)	910000	910000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Vinyl chloride	17000	1300000	ND (280)	ND (270)	ND (270)	ND (300)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (260)	ND (280)	ND (270)	ND (260)	ND (330)	ND (300)	ND (330)	ND (340)	ND (280)
Xylene (total)	260000	260000	ND (560)	ND (550)	ND (540)	ND (600)	ND (570)	ND (590)	26 J	ND (510)	180 J [′]	85 J	ND (560)	ND (540)	ND (520)	ND (660)	ND (600)	ND (660)	ND (670)	ND (560)
Al /	•			. ,	. ,	. ,		. ,					. ,	. ,	` '	, ,	. ,	. ,	. ,	·

Notes:

- 1. Results in **bold** were detected.
- 2. Results in red exceed one or more of the following IDEM criteria (3/2019)
- [A] Commercial/Industrial Direct Contact
- [B] Excavation Direct Contact
- 3. ND Not detected above reporting limit
- J Estimated result
- F1 MS and/or MSD Recovery outside of acceptance limits
- F2 MS/MSD exceeds control limits
- F4 MS/MSD RPD exceeds control limits due to sample size difference
- * LCS or LCSD is outside of acceptance limits

Location	IDEM	IDEM	SB-09	SB-09	SB-10	SB-10
Sample Date	Com/Ind	Excavation			03/06/2019	
Sample Type	Direct	Direct	N	N	N	N
Sample Depth (bgs)	Contact	Contact	0 - 2 (ft)	3 - 5 (ft)	0 - 2 (ft)	4 - 6 (ft)
- Carrier - Span (age)			5 – (11)	5 5 (11)	5 – (11)	(11)
Inorganic Compounds (mg/kg)						
Antimony	470	790	0.39 J	ND (0.94)	ND (1)	ND (0.97)
Arsenic	30	920	0.7 J	3.7	4.9	1.7
Barium	100000	100000	190	11 J	32	4.9 J
Beryllium	2300	3800	4.4	0.2 J	0.28 J	ND (0.49)
Cadmium	980	1900	0.61	0.22	0.36	0.078 J
Chromium	-	-	62	12	61	44
Cobalt	350	590	3.5	2.5	2.5	1.6
Copper	47000	79000	70	19	28	3.8
Cyanide	150	560	0.67	ND (0.56)	0.48 J	ND (0.59)
Iron	100000	100000	43000	24000	19000	7100
Lead	800	1000	56	17	29	4
Magnesium	-	-	23000	590	16000	14000
Manganese	26000	46000	540 B	600 B	1900 B	550 B
Mercury	3.1	3.1	0.12	ND (0.12)	0.019 J	ND (0.12)
Nickel	22000	38000	29	8.9	9.2	2.8 J
Selenium	5800	9800	ND (1.6)	0.68 J	1.4 J	0.63 J
Silver	5800	9800	0.84 B	0.27 JB	0.46 JB	0.19 JB
Sodium	-	-	760	ND (470)	150 J	77 J
Thallium	12	20	ND (1)	ND (0.94)	ND (2.1)	ND (0.97)
Tin	100000	100000	9.6 J	4.8 J	5 J	ND (9.7)
Vanadium	5800	9900	23	7.8	28	14
Zinc	100000	100000	170	63	88	17
Other (many flow)						
Other (mg/kg)			330	ND (25)	44	ND (26)
Sulfide	-	-	330	ND (35)	41	ND (36)
Semi-Volatile Organic Compounds (ug/kg)						
2,2'-oxybis(1-Chloropropane)	1000000	1000000	ND (210)	ND (120)	ND (270)	ND (120)
2,4,5-Trichlorophenol	82000000	10000000	ND (320)	ND (170)	ND (400)	ND (180)
2,4,6-Trichlorophenol	820000	1800000	ND (320)	ND (170)	ND (400)	ND (180)
2,4-Dichlorophenol	2500000	5200000	ND (320)	ND (170)	ND (400)	ND (180)
2,4-Dimethylphenol	16000000	34000000	ND (320)	ND (170)	ND (400)	ND (180)
2,4-Dinitrophenol	1600000	3400000	ND (700)	ND (380)	ND (890)	ND (390)
2,4-Dinitrotoluene	74000	3400000	ND (420)	ND (230)	ND (540)	ND (230)
2,6-Dinitrotoluene	15000	520000	ND (420)	ND (230)	ND (540)	ND (230)
2-Chloronaphthalene	60000000	100000000	ND (110)	ND (58)	ND (130)	ND (59)
2-Chlorophenol	5800000	9800000	ND (110)	ND (58)	ND (130)	ND (59)
2-Methylnaphthalene	3000000	6800000	79	53	130	25
2-Methylphenol (o-Cresol)	41000000	87000000	ND (420)	ND (230)	ND (540)	ND (230)
2-Nitroaniline	8000000	18000000	ND (420)	ND (230)	ND (540)	ND (230)
2-Nitrophenol	-	-	ND (110)	ND (58)	ND (130)	ND (59)
3&4-Methylphenol	-	-	ND (850)	ND (460)	ND (1100)	ND (470)
3,3'-Dichlorobenzidine	51000	2700000	ND (210)	ND (120)	ND (270)	ND (120)
3-Nitroaniline	-	-	ND (420)	ND (230)	ND (540)	ND (230)
4,6-Dinitro-2-methylphenol	66000	140000	ND (700)	ND (380)	ND (890)	ND (390)
4-Bromophenyl phenyl ether	-	-	ND (110)	ND (58)	ND (130)	ND (59)
4-Chloro-3-methylphenol	82000000	100000000	ND (320)	ND (170)	ND (400)	ND (180)
4-Chloroaniline	110000	6000000	ND (320)	ND (170)	ND (400)	ND (180)
4-Chlorophenyl phenyl ether	-		ND (110)	ND (58)	ND (130)	ND (59)
4-Nitroaniline	1100000	7000000	ND (420)	ND (230)	ND (540)	ND (230)
4-Nitrophenol	-	-	ND (700)	ND (380)	ND (890)	ND (390)
Acenaphthene	45000000	100000000	53	ND (17)	59	17 J
Acetaphanana	2500000	-	200 ND (210)	50	29 J	ND (18)
Acetophenone	2500000	2500000	ND (210)	ND (120)	ND (270)	ND (120)

Location SB-09 SB-09 SB-10 SB-10 **IDEM** IDEM 03/06/2019 03/06/2019 03/06/2019 03/06/2019 Sample Date Com/Ind Excavation Sample Type Ν Ν Direct Direct Ν Ν Contact 0 - 2 (ft) Sample Depth (bgs) Contact 0 - 2 (ft) 3 - 5 (ft) 4 - 6 (ft) Anthracene 100000000 100000000 290 66 150 100000 ND (230) Atrazine 5200000 ND (420) ND (230) ND (540) 1200000 63 J Benzaldehyde 1200000 ND (210) ND (120) ND (120) 210000 Benzo(a)anthracene 12000000 770 440 370 120 21000 680 340 Benzo(a)pyrene 500000 820 120 Benzo(b)fluoranthene 210000 12000000 1400 1200 490 230 Benzo(g,h,i)perylene 820 900 240 130 Benzo(k)fluoranthene 2100000 100000000 450 400 130 62 Biphenyl 200000 1100000 ND (110) ND (58) ND (130) ND (59) bis(2-Chloroethoxy)methane 2500000 5200000 ND (210) ND (120) ND (270) ND (120) bis(2-Chloroethyl)ether 10000 810000 ND (210) ND (120) ND (270) ND (120) bis(2-Ethylhexyl)phthalate 1600000 34000000 170 ND (81) ND (190) ND (82) Butyl benzylphthalate 12000000 100000000 ND (150) ND (81) ND (190) ND (82) Caprolactam 100000000 100000000 ND (700) ND (890) ND (380) ND (390) 92 J 69 J Carbazole 27 J 25 J 880 Chrysene 21000000 100000000 680 420 140 220 280 63 39 Dibenz(a,h)anthracene 21000 1200000 1000000 1900000 71 J 33 J 120 J 21 J Dibenzofuran Diethyl phthalate 100000000 100000000 ND (150) ND (81) ND (190) ND (82) ND (150) Dimethyl phthalate ND (81) ND (190) ND (82) Di-n-butylphthalate 82000000 100000000 ND (150) ND (190) ND (82) ND (81) Di-n-octyl phthalate 8200000 18000000 ND (150) ND (190) ND (82) ND (81) Fluoranthene 3000000 68000000 1900 460 890 220 3000000 68000000 56 ND (17) 53 20 Fluorene Hexachlorobenzene 9600 630000 ND (32) ND (17) ND (40) ND (18) 17000 17000 Hexachlorobutadiene ND (110) ND (58) ND (130) ND (59) 7500 16000 ND (700) ND (380) ND (890) ND (390) Hexachlorocyclopentadiene Hexachloroethane 80000 1100000 ND (110) ND (130) ND (59) ND (58) Indeno(1,2,3-cd)pyrene 210000 12000000 690 680 210 100 Isophorone 24000000 100000000 ND (110) ND (58) ND (130) ND (59) Naphthalene 170000 3100000 85 55 59 23 Nitrobenzene 220000 3100000 ND (210) ND (120) ND (270) ND (120) N-Nitrosodi-n-propylamine 3300 180000 ND (110) ND (58) ND (130) ND (59) N-Nitrosodiphenylamine 4700000 100000000 ND (110) ND (58) ND (130) ND (59) Pentachlorophenol 40000 2600000 ND (320) ND (170) ND (400) ND (180) Phenanthrene 690 210 990 210 100000000 100000000 ND (110) ND (130) 45 J Phenol ND (58) 23000000 51000000 1600 Pyrene 460 690 180 Volatile Organic Compounds (ug/kg) ND (250) * 640000 1.1.1-Trichloroethane 640000 ND (290) * ND (360) * ND (290) 1,1,2,2-Tetrachloroethane 27000 ND (250) 1900000 ND (290) ND (360) ND (290) 1,1,2-Trichloroethane 6300 35000 ND (250) ND (290) ND (360) ND (290) 1,1-Dichloroethane 160000 1700000 ND (250) ND (360) ND (290) ND (290) 1.1-Dichloroethene 1000000 1200000 ND (250) ND (290) ND (360) ND (290) 260000 1.2.4-Trichlorobenzene 400000 ND (250) ND (290) ND (360) ND (290) 1,2-Dibromo-3-chloropropane (DBCP) 640 86000 ND (500) * ND (580) * ND (720) * ND (590) 1,2-Dibromoethane (Ethylene Dibromide) 1600 180000 ND (250) * ND (290) * ND (360) * ND (290) 1.2-Dichlorobenzene 380000 ND (250) ND (360) 380000 ND (290) ND (290) 1.2-Dichloroethane 20000 ND (250) ND (290) ND (360) 730000 ND (290) 1,2-Dichloropropane 66000 360000 ND (250) ND (290) ND (360) ND (290) 1,3-Dichlorobenzene ND (250) ND (290) ND (360) ND (290) 1,4-Dichlorobenzene 110000 16000000 ND (250) ND (290) ND (360) ND (290) 2-Butanone (Methyl Ethyl Ketone) 28000000 28000000 ND (1000) ND (1200) ND (1400) ND (1200) 2-Hexanone 1300000 3300000 ND (1000) ND (1200) ND (1400) ND (1200)

EAST CHICAGO, INDIANA

APPENDIX - B SUMMARY OF SOIL ANALYTICAL RESULTS ARCELORMITTAL - INDIANA HARBOR LONG CARBON EAST CHICAGO, INDIANA

Location	IDEM	IDEM	SB-09	SB-09	SB-10	SB-10
Sample Date	Com/Ind	Excavation	03/06/2019	03/06/2019	03/06/2019	03/06/2019
Sample Type	Direct	Direct	N	N	N	N
Sample Depth (bgs)	Contact	Contact	0 - 2 (ft)	3 - 5 (ft)	0 - 2 (ft)	4 - 6 (ft)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	3400000	3400000	ND (1000)	ND (1200)	ND (1400)	ND (1200)
Acetone	100000000	100000000	ND (1000)	ND (1200)	ND (1400)	ND (1200)
Benzene	51000	1800000	ND (250)	ND (290)	ND (360)	ND (290)
Bromodichloromethane	13000	930000	ND (250)	ND (290)	ND (360)	ND (290)
Bromoform	860000	920000	ND (250) *	ND (290) *	ND (360) *	ND (290) *
Bromomethane (Methyl Bromide)	30000	160000	ND (250)	ND (290)	ND (360)	ND (290)
Carbon disulfide	740000	740000	ND (250)	ND (290)	ND (360)	ND (290)
Carbon tetrachloride	29000	460000	ND (250) *	ND (290) *	ND (360) *	ND (290) *
Chlorobenzene	760000	760000	ND (250)	ND (290)	ND (360)	ND (290)
Chloroethane	2100000	2100000	ND (250)	ND (290)	ND (360)	ND (290)
Chloroform (Trichloromethane)	14000	1900000	ND (250)	ND (290)	ND (360)	ND (290)
Chloromethane (Methyl Chloride)	460000	1300000	ND (250)	ND (290)	ND (360)	ND (290)
cis-1,2-Dichloroethene	2300000	2400000	ND (250)	ND (290)	ND (360)	ND (290)
cis-1,3-Dichloropropene	-	-	ND (250) *	ND (290) *	ND (360) *	ND (290) *
Cyclohexane	120000	120000	ND (500)	ND (580)	ND (720)	ND (590)
Dibromochloromethane	390000	800000	ND (250) *	ND (290) *	ND (360) *	ND (290) *
Dichlorodifluoromethane (CFC-12)	370000	850000	ND (250)	ND (290)	ND (360)	ND (290)
Ethylbenzene	250000	480000	ND (250)	ND (290)	ND (360)	ND (290)
Isopropylbenzene (Cumene)	270000	270000	ND (250)	ND (290)	ND (360)	ND (290)
Methyl acetate	29000000	29000000	530 J	ND (1500)	ND (1800)	ND (1500)
Methyl cyclohexane	-	-	ND (500)	ND (580)	ND (720)	ND (590)
Methyl Tert Butyl Ether	2100000	8900000	ND (250)	ND (290)	ND (360)	ND (290)
Methylene chloride	3200000	3300000	ND (500)	ND (580)	ND (720)	ND (590)
Naphthalene	170000	3.10E+06	ND (250)*	ND (290)*	ND (360)*	ND (290)*
Styrene	870000	870000	ND (250)	ND (290)	ND (360)	ND (290)
Tetrachloroethene	170000	170000	ND (250)	ND (290)	ND (360)	ND (290)
Toluene	820000	820000	ND (250)	ND (290)	ND (360)	ND (290)
trans-1,2-Dichloroethene	1900000	1900000	ND (250)	ND (290)	ND (360)	ND (290)
trans-1,3-Dichloropropene	-	-	ND (250) *	ND (290) *	ND (360) *	ND (290) *
Trichloroethene	19000	95000	ND (250)	ND (290)	ND (360)	ND (290)
Trichlorofluoromethane (CFC-11)	1200000	1200000	ND (250)	ND (290)	ND (360)	ND (290)
Trifluorotrichloroethane (Freon 113)	910000	910000	ND (250)	ND (290)	ND (360)	ND (290)
Vinyl chloride	17000	1300000	ND (250)	ND (290)	ND (360)	ND (290)
Xylene (total)	260000	260000	ND (500)	ND (580)	ND (720)	ND (590)
Notes:			. ,	• •	• •	. ,

Notes:

- 1. Results in **bold** were detected.
- 2. Results in red exceed one or more of the following IDEM criteria (3/2019)
- [A] Commercial/Industrial Direct Contact
 [B] Excavation Direct Contact
- 3. ND Not detected above reporting limit
- J Estimated result
- F1 MS and/or MSD Recovery outside of acceptance limits
- F2 MS/MSD exceeds control limits
- F4 MS/MSD RPD exceeds control limits due to sample size difference
- * LCS or LCSD is outside of acceptance limits

APPENDIX C

ProUCL Calculations

Appendix C-1

Surface Soil 0 – 2 ft bgs

	Α	В	С	D	E LICL Station	F	G H Sets with Non-Detect:		J	K	L
1					OCL Statis	ucs ioi Data	Sets with Non-Detect	•			
2		User Sele	ected Options								
3	Date		Computation		6/19/2019 9:	34:12 AM					
5			From File	2019-0618_	HAI-Soil Ris	k Summaries	s_e.xls				
6		Fu	III Precision	OFF							
7	C	onfidence	Coefficient	95%							
8	Number of	Bootstrap	Operations	2000							
9											
10	Methyl cyclor	nexane									
11											
12						General	Statistics				
13			Total	Number of C		11		Numbe		Observations	10
14					er of Detects	1				Non-Detects	10
15			N	umber of Dist	tinct Detects	1		Numb	er of Distinct	Non-Detects	9
16	14	/		-4 -4 · l· · -		11 D1101 /-				- 4-441	
17		-	•			•	r any other software) roject Team to estima				PTV
18	ıı is sugges	ieu to use	aitei fiative Si	ne specific va	iiues determi	neu by the P	roject ream to estima	ite environmen	ıaı pararneter	s (e.g., EPC,	DIV).
19				The date	a set for varie	able Methyl o	yclohexane was not p	rncessedi			
20				- Ine udle	a socioi valla	wiediyi C	y oronionalie was not p	- Joodacu!			
21											
23	Carbazole										
24											
25						General	Statistics				
26			Total	Number of C	Observations	11		Numbe	r of Distinct (Observations	9
27				Numbe	er of Detects	6			Number of	Non-Detects	5
28			N	umber of Dist	tinct Detects	5		Numb	er of Distinct	Non-Detects	4
29				Mini	mum Detect	35			Minimum	Non-Detect	54
30				Maxi	mum Detect	120			Maximum	Non-Detect	270
31				Varia	nce Detects	938.7			Percent	Non-Detects	45.45%
32				М	lean Detects	86.33				SD Detects	30.64
33				Med	dian Detects	92				CV Detects	0.355
34					ess Detects	-0.925				osis Detects	0.61
35				Mean of Log	ged Detects	4.387			SD of Log	ged Detects	0.449
36						100==					
37				N:			on Detects Only	06	W-0057		
38	<u> </u>			Shapiro Wilk T		0.933	D*+-+-7 D	•	Ik GOF Test	anificance Le	uol .
39			5% S	hapiro Wilk C	Fest Statistic	0.788	Detected D	ata appear Nor	mal at 5% Sig	yılırıcance Le	/el
40	<u> </u>			Lilliefors 1		0.24	Datastad D	ata appear Nor		anificance La	vel
41							al at 5% Significance		ان ۱۵۰ مار	grimeance Le	701
42					Data c	-pp-ui 110iiii	a. at 0 % Olgrinicance				
43			Kaplan-	Meier (KM) S	Statistics usin	g Normal Cri	tical Values and othe	· Nonparametri	c UCLs		
44 45					KM Mean	7 9		=		rror of Mean	13.05
45					KM SD	31.51				1 (BCA) UCL	101.1
46				95%	KM (t) UCL	102.6		95% KM (F	Percentile Bo	, ,	98.83
48	<u></u>				KM (z) UCL	100.5			95% KM Boo	otstrap t UCL	100.4
49				90% KM Che	byshev UCL	118.1			95% KM Che	byshev UCL	135.9
50			97	7.5% KM Che	byshev UCL	160.5			99% KM Che	byshev UCL	208.8
51						<u> </u>					
52				G	amma GOF	Tests on De	tected Observations 0	Only			
53					Test Statistic	0.443		Anderson-Da	•		
54				5% A-D C	Critical Value	0.698	Detected data ap	pear Gamma D	istributed at	5% Significan	ce Level

55	Α	В	С	D K-S	E S Test Statistic	F 0.283	G	Н	Kolmo	ogorov-	J Smirnov (GOF	K	L
56				5% K-S	Critical Value	0.333	Detected of	data app	ear Ga	ımma D	istributed	at 5%	Significan	ce Level
57				Detecte	ed data appea	r Gamma Dis	tributed at 5%	Significa	ance Le	evel				
58														
59					Gamma	Statistics on	Detected Data	a Only						
60					k hat (MLE)	7.167				k:	star (bias	correc	cted MLE)	3.695
61				Tł	heta hat (MLE) 12.05				Theta	star (bias	corre	cted MLE)	23.37
62					nu hat (MLE	86.01					nu star	(bias	corrected)	44.34
63				N	Mean (detects)	86.33								
64							<u>I</u>							
65					Gamma ROS	Statistics us	sing Imputed No	on-Detec	cts					
66			GROS may	y not be use	ed when data	set has > 50%	6 NDs with ma	ny tied o	bserva	tions at	multiple l	DLs		
67		GROS may	y not be used	d when ksta	ar of detects is	small such a	ıs <1.0, especia	ally wher	n the sa	ample s	ize is sma	all (e.g	., <15-20)	
68			Fc	or such situa	ations, GROS	method may	yield incorrect	values	of UCL	s and B	TVs			
69					This is espec	ially true whe	en the sample s	size is sn	nall.					
70		For gar	mma distribu	ted detecte	d data, BTVs	and UCLs ma	ay be computed	d using g	gamma	distribu	ition on K	(M esti	mates	
71					Minimum	n 35							Mean	79.36
72					Maximum	120							Median	77.52
73					SE	26.12							CV	0.329
74					k hat (MLE	8.663				k:	star (bias	corre	cted MLE)	6.361
75				Tł	heta hat (MLE	9.16				Theta	star (bias	corre	cted MLE)	12.48
76					nu hat (MLE) 190.6					nu star	(bias	corrected)	139.9
77			Adjusted	Level of S	Significance (β									
78		Appr	roximate Chi	Square Va	lue (139.95, α) 113.6			Adjust	ted Chi	Square V	'alue (139.95, β)	109.7
79		95% Gamma	a Approximat	te UCL (use	e when n>=50) 97.75		95% (Gamma	a Adjust	ed UCL (use w	hen n<50)	101.2
80														
81					Estimates of C	amma Parar	neters using KI	M Estima	ates					
82					Mean (KM)	79							SD (KM)	31.51
83				,	Variance (KM)) 993.1					S	E of M	lean (KM)	13.05
84					k hat (KM)	6.284						k	star (KM)	4.631
85					nu hat (KM)) 138.3						nu	star (KM)	101.9
86				-	theta hat (KM)) 12.57						theta	star (KM)	17.06
87			80%	 % gamma p	percentile (KM) 107.1				90%	6 gamma	perce	ntile (KM)	128.2
88			95%	" % gamma p	percentile (KM) 147.4				99%	6 gamma	perce	ntile (KM)	188.3
89														
90					Gamr	na Kaplan-Me	eier (KM) Statis	stics						
91		Appr	oximate Chi	Square Va	lue (101.88, α				Adjust	ted Chi	Square V	'alue (101.88, β)	76.38
92	95%	6 Gamma Ap	proximate KI	M-UCL (use	e when n>=50) 101.1	9	5% Gam	nma Ad	justed k	(M-UCL (use w	hen n<50)	105.4
93		<u> </u>				_1	<u> </u>				<u> </u>			
94					Lognormal Go	DF Test on De	etected Observ	ations C	Only					
95			S	Shapiro Will	k Test Statistic	0.844			Sha	piro Wi	lk GOF To	est		
96			5% S	hapiro Wilk	c Critical Value	0.788	Detec	ted Data	appea	ar Logno	ormal at 5	% Sig	nificance L	evel
97				Lilliefors	s Test Statistic	0.285			Li	illiefors	GOF Tes	t		
98			5	% Lilliefors	S Critical Value	0.325	Detec	ted Data	a appea	ar Logno	rmal at 5	% Sig	nificance L	evel
99				De	tected Data a	⊥ ppear Lognor	⊥ mal at 5% Sigr							
100														
101				l	Lognormal RC	S Statistics L	Jsing Imputed I	Non-Dete	ects					
102					Original Scale		-				Me	ean in	Log Scale	4.292
103				SD in	Original Scale	26.75					;	SD in	Log Scale	0.389
103		95% t l	JCL (assume	es normality	y of ROS data) 92.46				95%	Percentile	e Boots	strap UCL	90.68
105				95% BCA F	Bootstrap UCL	90.82					95%	Bootst	rap t UCL	92.09
106					ICL (Log ROS)									
107							<u> </u>							
107			Statis	stics using I	KM estimates	on Logged D	ata and Assum	ning Logr	normal	Distribu	ution			

109	Α		В		С		D KM N	Mean (lo		F 4.268		G	Н			ı		J	KM Ge	K eo Mear	1 7	L 1.38
110							KI	/I SD (lo	gged)	0.478						95%	Critic	cal H \	Value (I	KM-Log) 2	2.148
111				K۱	/I Stand	lard E		Mean (lo		0.198							9.	5% H-	-UCL (k	KM -Log) 11	0.8
112							KI	/I SD (lo	gged)	0.478						95%	Critic	cal H \	Value (I	KM-Log) 2	2.148
113				K۱	/I Stand	lard E	rror of I	Mean (lo	gged)	0.198												
114																						
115										DL/2	Statistic	s										
116					DL/2	2 Norr	nal								DL/2	2 Log-	Trans	sforme	ed		-	
117						M	lean in (Original	Scale	90.45								Me	an in Lo	og Scale	2 و	1.398
118							SD in (Original	Scale	36.87								S	3D in Lo	og Scale) ().534
119							•	nes norn	• .	110.6									5% H-S	Stat UCL	_ 13	6.4
120					DL/2	2 is no	ot a reco	ommend	ed me	thod, provi	ded for	compa	arisons a	and h	nistori	ical re	asons	8				
121																						
122										tric Distribu												
123							Detecte	d Data a	appear	Normal Di	istribute	ed at 5%	% Signif	icano	ce Le	vel						
124										0		- 11										
125							05	O/ I/N/ (+)		Suggested	JUCL	o Use										
126							95	% KM (t)	OCL	102.6											<u> </u>	
127		Not	e. Suaa	estini	ne renai	rdina	the sele	ection of	a 95%	6 UCL are p	orovide	d to he	In the u	ser tr	مامی د	ct the	mosi	annr	onriate	95% 110	וי	
128		1101	.e. ougge	CSLIO	•	_				sed upon d			•					аррі	эрпасе		,L. ———	
129		Th	ese reco	ommo						ilts of the si								ichle	and Le	e (2006	i).	
130								-		orld data s						_					-	
131 132	<u> </u>													9			,					
_	Dimethyl ı	phthe	alate																			
134																						
135										Genera	I Statist	tics										
136					Tota	al Nui	nber of	Observa	ations	11					1	Numb	er of l	Distino	ct Obse	ervations	5 9)
137							Num	ber of De	etects	1							Nu	mber	of Non-	-Detects	s 1	0
138					1	Numb	er of Di	stinct De	etects	1						Numb	er of	Distin	nct Non-	-Detects	s 8	}
139		-																				
140			-	-						l! ProUCL (•								
141	It is sug	geste	ed to use	alte	rnative	site s	pecific v	/alues de	etermi	ned by the	Project	Team	to estin	nate (enviro	onmer	ntal pa	arame	eters (e.	.g., EPC	, BTV).
142																						
143							The d	ata set fo	or varia	able Dimet	hyl phth	nalate v	vas not	proc	essec	!!						
144																						
145																						
146	O. 1614 -																					
147	Sulfide																					
148										Genera	l Static	tice										
149					Tota	al Nu	mher of	Observa	ations	11	- Otatio				1	Numbe	er of l	Distina	ct Ohse	ervations	s 1	0
150					1010			- DOG! VC	2110113	- 11										ervations		
151								Min	imum	41					'		J. OI I		9 0000	Mear		
152									imum	1500										Mediar		
153 154									SD	550.9								Sto	d. Error	of Mear		6.1
155						С	oefficie	nt of Var		1.335										kewness		1.722
156																						
157										Normal	GOF T	est										
158						Shap	iro Wilk	Test Sta	atistic	0.661					Sha	piro W	/ilk G	OF Te	est			
159					5% \$	Shapi	iro Wilk	Critical '	Value	0.85			Dat	ta No	t Nor	mal at	5% \$	Signifi	icance l	Level		
160						L	illiefors	Test Sta	atistic	0.306					Lil	lliefors	GO	- Test	i			
161						5% L	illiefors	Critical \	Value	0.251			Dat	ta No	t Nor	mal at	5% \$	Signifi	icance l	Level		
162								Dat	ta Not	Normal at	5% Sig	nifican	ce Leve	H								

162	Α	В	С	D	E	F	G	Н	I	J	K	L
163 164					As	suming Norn	nal Distributior	n				
165			95% No	ormal UCL				95% UC	CLs (Adjus	sted for Skewnes	ss)	
166				95% St	udent's-t UCL	713.8		959	% Adjuste	d-CLT UCL (Che	en-1995)	778.1
167								95	5% Modifie	ed-t UCL (Johnse	on-1978)	728.1
168												
169	-					Gamma (GOF Test		-			
170				A-D	Test Statistic	0.749		Andersor	n-Darling (Gamma GOF Te	est	
171				5% A-D	Critical Value	0.759	Detected	data appear C	Samma Di	stributed at 5%	Significand	e Level
172				K-S	Test Statistic	0.209		Kolmogoro	v-Smirno	v Gamma GOF	Гest	
173				5% K-S	Critical Value	0.264	Detected	data appear G	Gamma Di	stributed at 5%	Significand	e Level
174				Detecte	d data appear	Gamma Dis	tributed at 5%	Significance I	Level			
175												
176						Gamma	Statistics					
177					k hat (MLE)					star (bias correct	<i>'</i>	0.665
178					eta hat (MLE)				Thetas	star (bias correct		621.1
179					nu hat (MLE)					nu star (bias co		14.62
180			Ml	LE Mean (bi	ias corrected)	412.7				MLE Sd (bias co	·	506.3
181								Арр	<u> </u>	Chi Square Val	, ,	6.998
182			Adjus	sted Level o	f Significance	0.0278			Ad	ljusted Chi Squa	re Value	6.158
183												
184							ma Distribution					
185		95% Approxi	mate Gamm	a UCL (use	when n>=50)	862.3		95% Adjus	sted Gamn	na UCL (use wh	en n<50)	979.9
186												
187				N : \ A (:II -	T+ O+-+i-+i-	Lognormal	GOF Test	Ohania	NACH-1			
188					Test Statistic		-	•	_	normal GOF Tes		
189			5% 51	•	Critical Value		L			at 5% Significar	ice Levei	
190					Test Statistic	0.19 0.251	-		_	rmal GOF Test at 5% Significar		
191				5% Lilletors	Critical Value		at 5% Significa		ognormai	at 5% Significar	ice Levei	
192					Data appear	Logiloilliai a	at 5% Signinica	ilice resei				
193						Lognorma	Statistics					
194				Minimum of	Logged Data		Otationos			Mean of logg	ned Data	5.312
195					Logged Data					SD of log		1.218
196				viaximam or	Logged Data	7.010					ged Bata	
197					Assı	ımina Loano	rmal Distribution	ion				
198					95% H-UCL				90%	Chebyshev (MVI	JE) UCL	838.4
199 200			95%	Chebyshev	(MVUE) UCL					Chebyshev (MVI		1329
201		-		•	(MVUE) UCL					- \	•	
202				•	,	<u> </u>	<u> </u>					
203					Nonparame	etric Distributi	ion Free UCL	Statistics				
204				Data appea	ar to follow a I	Discernible D	istribution at 5	5% Significand	ce Level			
205												
206					Nonpa	rametric Dist	ribution Free U	JCLs				
207				9	5% CLT UCL	685.9				95% Jackk	nife UCL	713.8
208			95%	Standard B	Bootstrap UCL	670.1				95% Bootstra	ap-t UCL	1498
209			9	95% Hall's B	ootstrap UCL	2279			95% F	Percentile Bootst	rap UCL	684.2
210					ootstrap UCL	776.7						
211					ean, Sd) UCL					ebyshev(Mean,	,	1137
212			97.5% Ch	nebyshev(M	ean, Sd) UCL	1450			99% Ch	ebyshev(Mean,	Sd) UCL	2065
213			- 					- 				
214						Suggested	UCL to Use					
215			959	% Adjusted	Gamma UCL	979.9						
216										-		

217	A B C D E Note: Suggestions regarding the selection of a 95%	F UCL are pro	G H I J K ovided to help the user to select the most appropriate 95% UCL.	L
218	Recommendations are bas	ed upon dat	a size, data distribution, and skewness.	
219	These recommendations are based upon the resul	Its of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
220	However, simulations results will not cover all Real W	orld data set	ts; for additional insight the user may want to consult a statisticia	n.
221			<u> </u>	
-	Arsenic			
223				
224		General S	Statistics	
225	Total Number of Observations	11	Number of Distinct Observations	10
226	Number of Detects	5	Number of Non-Detects	6
227	Number of Distinct Detects	5	Number of Distinct Non-Detects	5
228	Minimum Detect	0.7	Minimum Non-Detect	4.5
229	Maximum Detect	5.6	Maximum Non-Detect	22
230	Variance Detects	3.513	Percent Non-Detects	54.55%
231	Mean Detects	3.74	SD Detects	1.874
232	Median Detects	3.8	CV Detects	0.501
233	Skewness Detects	-1.272	Kurtosis Detects	2.046
234	Mean of Logged Detects	1.12	SD of Logged Detects	0.843
235			55	
236	Norm	al GOF Test	on Detects Only	
237	Shapiro Wilk Test Statistic	0.895	Shapiro Wilk GOF Test	
238	5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Leve	el
239	Lilliefors Test Statistic	0.291	Lilliefors GOF Test	
240	5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Leve	el
241	Detected Data a	ppear Norm	al at 5% Significance Level	
242		···	<u> </u>	
243	Kaplan-Meier (KM) Statistics using	g Normal Cri	tical Values and other Nonparametric UCLs	
244	KM Mean	3.452	KM Standard Error of Mean	0.823
245	KM SD	1.675	95% KM (BCA) UCL	4.644
246	95% KM (t) UCL	4.944	95% KM (Percentile Bootstrap) UCL	4.65
247	95% KM (z) UCL	4.806	95% KM Bootstrap t UCL	4.558
248	90% KM Chebyshev UCL	5.921	95% KM Chebyshev UCL	7.039
249	97.5% KM Chebyshev UCL	8.59	99% KM Chebyshev UCL	11.64
250				
251	Gamma GOF	Tests on Def	tected Observations Only	
252	A-D Test Statistic	0.655	Anderson-Darling GOF Test	
253	5% A-D Critical Value	0.683	Detected data appear Gamma Distributed at 5% Significance	e Level
254	K-S Test Statistic	0.375	Kolmogorov-Smirnov GOF	
255	5% K-S Critical Value	0.36	Detected Data Not Gamma Distributed at 5% Significance	Level
256	Detected data follow App	r. Gamma D	istribution at 5% Significance Level	
257	 		-	
258	Gamma 9	Statistics on	Detected Data Only	
258 259	k hat (MLE)	2.663	k star (bias corrected MLE)	1.199
260	Theta hat (MLE)	1.404	Theta star (bias corrected MLE)	3.12
261	nu hat (MLE)	26.63	nu star (bias corrected)	11.99
262	Mean (detects)	3.74	· '	
263	, , , , ,			
264	Gamma ROS	Statistics us	ing Imputed Non-Detects	
265			NDs with many tied observations at multiple DLs	
266	-		s <1.0, especially when the sample size is small (e.g., <15-20)	
	-		yield incorrect values of UCLs and BTVs	
267 268			n the sample size is small.	
268			by be computed using gamma distribution on KM estimates	
269	Minimum	0.7	Mean	3.335
270				

271	Α		В		С	D	E Maximum	F 5.6	G	Н		ı		J	K Med	dian	L 3.161
272							SD	1.304								CV	0.391
273							k hat (MLE)	4.985				k	star (l	bias co	rected M	ILE)	3.686
274						The	eta hat (MLE)	0.669				Theta	star (l	bias co	rrected M	ILE)	0.905
275							nu hat (MLE)	109.7					nu :	star (bia	as correc	ted)	81.1
276				Ad	djusted	Level of Sig	gnificance (β)	0.0278									
277			App	proxim	ate Chi	Square Va	lue (81.10, α)	61.35			Adju	usted C	hi Squ	are Val	ue (81.10), β)	58.55
278		95%	Gamma	a Appr	oximate	UCL (use	when n>=50)	4.409		95%	Gamm	a Adjus	sted U	CL (use	when n	<50)	4.62
279								1	1								
280						E	stimates of G	amma Parar	neters usin	KM Estim	ates						
281							Mean (KM)	3.452							SD (I	KM)	1.675
282						V	ariance (KM)							SE c	of Mean (0.823
283							k hat (KM)								k star (3.151
284							nu hat (KM)								nu star (-	69.31
285							neta hat (KM)	0.813							eta star (1.096
286						· .	ercentile (KM)						•	•	rcentile (,	6.06
287					95%	gamma pe	ercentile (KM)	7.145				99	% gan	nma pe	rcentile (KM)	9.489
288																	
289								na Kaplan-M	eier (KM) S	atistics							
290						•	lue (69.31, α)				-				ue (69.3°		48.61
291	95	% Gan	nma Ap	proxim	nate KM	I-UCL (use	when n>=50)	4.678		95% Gan	nma Ad	djusted	KM-U	CL (use	when n	<50)	4.923
292																	
293							ognormal GC		etected Obs	ervations (
294						·	Test Statistic		_			apiro W					_
295					5% Sr		Critical Value		L	Detected Da		•			gnificanc	e Leve	31
296					F		Test Statistic			Sata ata d Da		illiefors			:6:	- 1	_1
297					5		Critical Value etected Data			etected Da		Lognoi	rmai ai	1 5% 51	gnilicanc	e Leve)
298						De	electeu Data	Not Lognom	iai at 5% Si	yriiicance i	revei						
299						1.4	ognormal RO	S Statistics I	leina Imput	ed Non-Dei	tacte						
300							Ognormal RO Original Scale		Jang imput	eu Noil-Dei	IECIS			Mean	in Log S	cale	0.986
301							Original Scale								in Log S		0.577
302			95% t I	UCL (a	ssume		of ROS data)					95%	Perce		otstrap l		3.733
303			00701	002 (0		-	ootstrap UCL								otstrap t l		3.924
304							L (Log ROS)									-	
305 306							(-3 /										
307					Statis	tics using K	M estimates	on Logged D	ata and Ass	suming Log	ınorma	l Distrib	oution				
						•	lean (logged)							K	M Geo M	ean	2.767
308							SD (logged)					95%	Critica		lue (KM-l		2.601
310				KM S	Standar		lean (logged)								CL (KM -l	٠.	7.146
311						KN	SD (logged)	0.782				95%			ue (KM-l		2.601
312				KM S	Standar	d Error of M	lean (logged)	0.403									
313								<u> </u>	1								
314								DL/2 S	tatistics								
315					DL/2 N	lormal					DL	/2 Log-	Transf	formed			
316						Mean in C	Original Scale	5.341						Mean	in Log S	cale	1.449
317						SD in C	Original Scale	3.199						SD	in Log S	cale	0.797
318				Ś	95% t U	CL (Assum	es normality)	7.089						95%	H-Stat U	JCL	11.34
319					DL/2 is	s not a reco	mmended me	ethod, provid	ed for comp	arisons an	d histo	rical rea	asons				
320																	
321							Nonparame	etric Distribut	ion Free UC	CL Statistics	s						
322						Detecte	d Data appea	r Normal Dis	tributed at §	5% Significa	ance L	evel					
323																	
324								Suggested	UCL to Use)							

325	Α	В		С		D 959	E % KM (t) U	CL	F 4.944	G		Н		I		J		K		L
326								ı		I										
327		Note: Sug	ggestic	ns regard	ding th	e sele	ection of a	95%	UCL are pr	ovided to h	elp t	he user	to sel	ect the	mos	t appro	priate	95% U	CL.	
328									sed upon da											
329							•		Its of the sin					_				•	•	
330		However, si	imulati	ons resul	lts will	not co	ver all Rea	al W	orld data se	ts; for addit	iona	l insight	the u	ser ma	y war	nt to co	nsult a	a statisti	cian.	
408																				
409	Iron																			
410										o										
411				T-4-	- I. N.I I	h -	Ob		General	Statistics				Niconala		D:-+:	01			
412				rota	ıı ıvumı	ber of	Observation	ons	11									ervations		0
413							Minim	um	6100					Numb	ei oi i	viissirig	Obse	ervation: Mear		
414									210000									Mediar		.000
415									58715							Std	Error	of Mea		703
416					Cor	efficier	nt of Variat		0.936							Ota.		kewness		1.72
417							o. variat		J.000										1	
418									Normal C	OF Test										
419 420				5	Shapiro	o Wilk	Test Statis	stic	0.839				Sha	apiro V	Vilk G	OF Tes	st			
421							Critical Va		0.85			Data N		•				Level		
422					Lill	liefors	Test Statis	stic	0.198				L	.illiefor:	s GOI	= Test				
423				5	5% Lilli	iefors	Critical Va	lue	0.251		[Data app	ear N	Normal	at 5%	6 Signif	icanc	e Level		
424						Data	a appear A	ppr	oximate Nor	mal at 5% S	Signi	ficance	Level							
425																				
426								As	suming Norr	nal Distribu	tion									-
427				95% N	lormal l	UCL						959	6 UCI	Ls (Adj	justed	for Ske	ewne	ss)		
428					95	5% Stu	udent's-t U	CL	94823				95%	Adjus	ted-C	LT UC	L (Ch	en-1995) 101	1663
429													95%	% Modi	ified-t	UCL (J	lohns	on-1978) 96	353
430									0	205 T										
431						^ D	Toot Statis	nti o		GOF Test		Anda		Dorlin	a Cor	nma G	OE Ta			
432							Test Statis Critical Va		0.143	Dotoote	0d d	ata appe								Lovel
433							Test Statis		0.0932	Detecti	eu u					amma (•	IICE	Level
434					5%		Critical Va		0.0932	Detect	ed da	ata appe							nce	l evel
435									Gamma Dis						Diotini	Juliou u	. 0 /0 .	Sigrillioc	1100	
436																				
437 438									Gamma	Statistics										
439							k hat (MI	LE)	1.323					-	k star	(bias c	orrect	ed MLE	.)	1.023
440						The	eta hat (MI	LE)	47406					Theta	a star	(bias c	orrect	ed MLE) 61	321
441							nu hat (MI	LE)	29.11						nı	ı star (b	oias co	orrected)	22.51
442				M	/ILE Me	ean (bi	as correct	ed)	62736						ML	E Sd (b	oias co	orrected) 62	.025
443													App	roxima	te Ch	i Squar	e Val	ue (0.05)	12.72
444				Adju	isted Le	evel of	f Significar	псе	0.0278					,	Adjus	ted Chi	Squa	re Value	Э	11.54
445								ļ		•										
446									suming Gam	ma Distribu	ıtion									
447		95% Appr	oximat	e Gamm	ıa UCL	(use \	when n>=5	50))	111014			95% A	djuste	ed Gar	mma l	JCL (us	se wh	en n<50) 122	2403
448																				
449										GOF Test										
450							Test Statis		0.977							nal GO				
451				5% S			Critical Va		0.85		Da	ata appe		-		•		ice Leve	!	
452							Test Statis		0.154							I GOF		'		
453				5	5% Lilli	etors	Critical Va		0.251	+ F0′ C' ''		ata appe		gnorm	aı at 5	5% Sigr	ııtıcar	ice Leve	H	
454							рата арр	ear	Lognormal	at 5% Signif	ııcan	ce Leve	1							
455																				

456	А	В	С	D	Е	F Lognorma	G I Statistics	Н	I	J		K	L
457				Minimum of I	Logged Data	8.716				Mea	an of log	ged Data	10.62
458				Maximum of I	Logged Data	12.25				S	SD of log	ged Data	1.042
459													
460					Assı	ıming Logno	rmal Distributi	ion					
461					95% H-UCL	195131			90%	Chebysl	hev (MV	UE) UCL	132250
462			95%	Chebyshev (MVUE) UCL	162224			97.5%	Chebysl	hev (MV	UE) UCL	203826
463			99%	Chebyshev (MVUE) UCL	285545							
464													
465					Nonparame	tric Distribut	ion Free UCL	Statistics					
466				Data appea	r to follow a [Discernible D	istribution at {	5% Significa	ance Level				
467													
468					Nonpai	rametric Dist	ribution Free I	JCLs		-			
469				95	5% CLT UCL	91856				95	% Jackk	nife UCL	94823
470			95%	Standard Bo	ootstrap UCL	90139				95%	Bootstr	ap-t UCL	112357
471			ç	95% Hall's Bo	ootstrap UCL	232493			95%	Percenti	ile Boots	trap UCL	91191
472				95% BCA Bo	ootstrap UCL	100818							
473			90% Cł	nebyshev(Me	an, Sd) UCL	115846			95% C	hebyshe	v(Mean,	Sd) UCL	139903
474			97.5% Cł	nebyshev(Me	an, Sd) UCL	173294			99% C	hebyshe	v(Mean,	Sd) UCL	238882
475						L							
476						Suggested	UCL to Use						
477				95% Stu	dent's-t UCL	94823							
478												l	
479			When a	data set follov	ws an approx	imate (e.g., ı	normal) distrib	oution passir	ng one of th	ne GOF to	est		
480		When app	licable, it is	suggested to	use a UCL b	ased upon a	distribution (e	g., gamma) passing b	oth GOF	tests in	ProUCL	
481													
482	No	ote: Sugge	stions regard	ding the selec	ction of a 95%	6 UCL are pr	ovided to help	the user to	select the	most app	propriate	95% UCI	L.
483						•	ta size, data d						
484	T	hese reco	mmendation	s are based ι	upon the resu	ılts of the sin	nulation studie	s summariz	zed in Singh	n, Maichle	e, and Le	ee (2006)	•
485	How	ever, simu	lations resul	ts will not cov	ver all Real W	orld data se	ts; for additior	nal insight th	ne user may	want to	consult a	a statistic	ian.
486													
487													
488	Manganese												
489													
490						General	Statistics						
491			Total	Number of C	Observations	11				er of Disti			10
492									Numbe	er of Miss	sing Obse		0
493					Minimum	540						Mean	6276
494					Maximum						=	Median	4200
495					SD	5247				S		of Mean	1582
496				Coefficient	t of Variation	0.836					S	kewness	1.136
497													
498						Normal C	OF Test				_		
499				Shapiro Wilk					Shapiro W				
500			5% S	hapiro Wilk C		0.85		Data Not	t Normal at			Level	
501					Test Statistic	0.316				GOF Te			
502			5	5% Lilliefors C		0.251	0/ 01: 15		t Normal at	5% Sign	iiticance	Level	
503					Data Not	Normal at 5	% Significance	e Level					
504							1 B 1 / P - **						
505			AP2/ 1:		As	suming Norn	nal Distribution				01	\	
			95% No	ormal UCL	dent's-t UCL	01.10			UCLs (Adju				0.457
506					aontic t LICI	9143		(95% Adjust	.ea-CIT l	uci (Ch	on_1495\	9457
				95% Stu	idenii s-i OCL	0140					•	,	000 1
506				95% Stu	ident s-t occ	3140			95% Modif		•	,	9234

510	Α	В	}	С	<u> </u>	D	E	Τ,	F Gamma (G GOF Test	Н			,	J	K	L
511						A-D	Test Statist	ic	0.516		And	lerson-l	Darling	Gamm	a GOF	Test	
512		5% A-D Critical Value								Detected data appear Gamma Distributed at 5% Significance							nce Level
513		K-S Test Statistic								Kolmogorov-Smirnov Gamma GOF Test							
514					59	% K-S C	Critical Valu	ie	0.26	Detected data appear Gamma Distributed at 5% Significance Level							
515					D	etected	data appe	ar Gar	mma Dis	tributed at 5%	Significa	ance Le	vel				
516																	
517								(Gamma	Statistics							
518							k hat (MLE	′	1.56	k star (bias corrected MLE) 1.19							
519	Theta hat (MLE)								022	Theta star (bias corrected MLE)							
520							nu hat (MLE	,	34.33	nu star (bias corrected							
521				N	MLE M	ean (bia	as corrected	d) 62	276	MLE Sd (bias corrected Approximate Chi Square Value (0.05							
522												Appro			•	•	´
523				Adjı	usted L	evel of	Significand	ce (0.0278				A	djusted	Chi Sq	uare Value	14.28
524		Assuming Gamma Distribution															
525		95% Approximate Gamma UCL (use when n>=50) 10574 95% Adjusted Gamma UCL (use when n<50) 11557															144557
526		95% Ap	proxim	ate Gami	ma UC	L (use \	wnen n>=5	0) 10:	5/4		95% /	Aajuste	a Gam	ma UCI	L (use v	/nen n<50) 11557
527		Lognormal GOF Test															
528					Chanir	- ۱۸/ilk -	Test Statist		0.91	GOF Test	Ch	oniro \A	filk Log	normal	GOF T		
529							Critical Valu		0.85	г		-	_			esi ance Leve	
530				J /0 ·					0.83								<u>'</u>
531		Lilliefors Test Statistic 5% Lilliefors Critical Value								Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significant							
532					3 70 LIII				0.251	rmal at 5% Significance Level							
533								u. 209	gnomarc	it o /o Oigiiiiloc		<u> </u>					
534 535								Lo	ognorma	Statistics							
536					Minin	num of I	Logged Dat		6.292					Ме	ean of lo	gged Data	8.391
537							Logged Dat		9.68							gged Data	
538																	
539							As	sumin	ng Logno	rmal Distributi	on						
540							95% H-UC	L 170	060				90%	Chebys	shev (M	VUE) UCL	. 12717
541				95%	% Cheb	yshev (MVUE) UC	L 154	478				97.5%	Chebys	shev (M	VUE) UCL	. 19309
542				99%	% Cheb	yshev (MVUE) UC	CL 268	835								
543																	
544		Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level															
545					Data	appea	r to follow a	a Disce	ernible D	istribution at 5	5% Signif	ficance	Level				
546																	
547						0.5	•			ribution Free l	JCLS			0	50/ 1 1	1 : 1101	04.40
548				0.50	0/ 04		5% CLT UC		378							kknife UCL	
549							ootstrap UC		751 207				OE0/			trap-t UCL	
550							ootstrap UC ootstrap UC		297 276				95%	rercen	me Roo	tstrap UCL	8791
551				an% C			ean, Sd) UC		022				35% CI	nehveh	ev(Mee	n, Sd) UCI	13172
552					•	•	an, Sd) UC an, Sd) UC								•	1, Sd) UCL 1, Sd) UCL	
553				J7.J/0 C		.10 4 (1416						•	JU 70 OI	Jobysile	C v (ivical	., Juj UUL	
554 555								Suc	agested (UCL to Use							
555 556				9.		justed (Gamma UC										
556 557						,			-								
557 558		Note: S	uggest	ions rega	rding th	ne selec	ction of a 9!	5% UC	CL are pr	ovided to help	the user	r to sele	ect the i	most ar	propria	te 95% UC	L.
558		Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.															
560		These	recom						•						ile, and	Lee (2006).
561		These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.															
562																	
563	Thallium																
500																	

	Α	В	С	D	E	F	G	Н	I	J	K	L
564												
565						General	Statistics					
566			Total	Number of C	Observations	11			Number	of Distinct	Observations	10
567				Numbe	er of Detects	1				Number of	Non-Detects	10
568			N	umber of Dis	tinct Detects	1			Numbe	r of Distinct	Non-Detects	9
569												
570	1	Warning: On	ly one distind	t data value	was detected	l! ProUCL (c	r any other s	oftware) sho	ould not be u	sed on such	a data set!	
571	It is sugge	sted to use	alternative si	te specific va	lues determi	ned by the F	Project Team	to estimate	environment	al paramete	rs (e.g., EPC,	BTV).
572												
573				Th	ne data set fo	r variable Th	nallium was n	ot processe	d!			
574				·			·					
575												

Appendix C-2

Total Soil 0 – 10 feet bgs

	A B C	D E UCL Statist	F ics for Data	G Sets with No	H n-Detects	I	J	K	L
2		001 0141101			20.00.0				
3	User Selected Option	s							
4	Date/Time of Computation	ProUCL 5.16/19/2019 9:3	35:12 AM						
5	From File	2019-0618_HAI-Soil Risk	s Summaries	s_d.xls					
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
9									
10	Methyl cyclohexane								
11									
12	Tak	I Ni wali awat Obaa wati wa	General	Statistics		NIls	of Distinct	01	45
13	lota	al Number of Observations	22			Numbe		Observations	15
14		Number of Detects	2			Numb		of Non-Detects	13
15	ľ					Numb			
16		Minimum Detect	80 120					ım Non-Detect	720
17		Maximum Detect Variance Detects	800					im Non-Detects	90.91%
18		Variance Detects Mean Detects	100				Percer	SD Detects	28.28
19		Mean Detects Median Detects	100					CV Detects	0.283
20		Skewness Detects	N/A				ν.	rtosis Detects	0.283 N/A
21		Mean of Logged Detects	N/A 4.585					ogged Detects	0.287
22		Mean of Logged Detects	4.000				3D 01 L	ogged Detects	0.207
23		Warning: Do	ata eat hae c	only 2 Detecte	ad Values				
24	-	This is not enough to comp		<u> </u>		d estimates			
25		This is not enough to compl	ute meaning	iui oi reliable	sausics an	u estimates	J.		
26									
27		Norm	al GOF Tes	t on Detects (Only				
28				Perform GO					
29 30									
31	Kaplan	-Meier (KM) Statistics using	g Normal Cr	itical Values	and other No	nparametri	ic UCLs		
32	<u> </u>	KM Mean	100			K	M Standard	Error of Mean	20
33		KM SD	20				95% k	(M (BCA) UCL	N/A
34		95% KM (t) UCL	134.4			95% KM (F	Percentile B	ootstrap) UCL	N/A
35		95% KM (z) UCL	132.9				95% KM B	ootstrap t UCL	N/A
36		90% KM Chebyshev UCL	160				95% KM Cl	nebyshev UCL	187.2
37	9	7.5% KM Chebyshev UCL	224.9				99% KM Ch	nebyshev UCL	299
38				ı.				<u> </u>	
39		Gamma GOF	Tests on De	tected Obser	vations Only				
40		Not End	ough Data to	Perform GO	F Test				
41									
42				Detected Da	ta Only				
43		k hat (MLE)	24.66				•	orrected MLE)	N/A
44		Theta hat (MLE)	4.055			Theta	•	orrected MLE)	N/A
45		nu hat (MLE)	98.65				nu star (t	pias corrected)	N/A
46		Mean (detects)	100						
47									
48		Estimates of Ga		neters using	KM Estimate	S			
49		Mean (KM)	100					SD (KM)	20
50		Variance (KM)	400				SE	of Mean (KM)	20
51		k hat (KM)	25					k star (KM)	21.62
-									
52		nu hat (KM)	1100					nu star (KM)	951.3
52 53 54		nu hat (KM) theta hat (KM) % gamma percentile (KM)	1100 4 117.5					nu star (KM) heta star (KM) ercentile (KM)	951.3 4.625 128.4

	A B C D E	F	G	Н	I	J	K (KM)	L 150.7
55	95% gamma percentile (KM	137.8			9	9% gamma p	ercentile (Kivi)	156.7
56	Come	na Kaplan-M	oior /KM/ Ct	otiotico				
57	Gailli	iia Napiaii-ivii	elei (Kivi) Si	ausucs	Adiust	ted Level of Si	ignificance (β)	0.0386
58	Approximate Chi Square Value (951.33, α) 880.7			-		ue (951.33, β)	875.7
59	95% Gamma Approximate KM-UCL (use when n>=50	•			•	•	se when n<50)	108.6
60	- Constitution of the control of the	, 100		00 % Gamin	ia riajasto	u 11111 00L (uc	o when it soo)	
61	Lognormal G0	OF Test on De	etected Obs	ervations On	lv			
62		ough Data to			,			
63 64								
65	Lognormal RC	S Statistics U	Jsing Impute	ed Non-Detec	cts			
66	Mean in Original Scale					Mear	n in Log Scale	4.585
67	SD in Original Scale	18.06				SI) in Log Scale	0.182
68	95% t UCL (assumes normality of ROS data) 106.2			959	% Percentile E	Bootstrap UCL	105.6
69	95% BCA Bootstrap UCL	105.2				95% Bo	ootstrap t UCL	106.6
70	95% H-UCL (Log ROS	106.8						-
71		1						
72	Statistics using KM estimates	on Logged D	ata and Ass	suming Logno	rmal Distr	ibution		
73	KM Mean (logged	4.585				ŀ	KM Geo Mean	97.98
74	KM SD (logged	0.203			959	% Critical H Va	alue (KM-Log)	1.777
75	KM Standard Error of Mean (logged	0.203				95% H-U	ICL (KM -Log)	108.2
76	KM SD (logged	0.203			959	% Critical H Va	alue (KM-Log)	1.777
77	KM Standard Error of Mean (logged	0.203						
78								
79		DL/2 S	tatistics					
80	DL/2 Normal				DL/2 Log	g-Transformed	İ	
81	Mean in Original Scale	272.7				Mear	n in Log Scale	5.567
82	SD in Original Scale	62.79				SE) in Log Scale	0.337
83	95% t UCL (Assumes normality	295.8				95	% H-Stat UCL	317.7
84	DL/2 is not a recommended m	ethod, provid	led for comp	arisons and l	historical r	easons	,	
85								
86	•	etric Distribut						
87	Data do not follow a D	iscernible Dis	stribution at	5% Significa	nce Level			
88								
89			UCL to Use	!				
90	95% KM (t) UCL						KM H-UCL	108.2
91	95% KM (BCA) UCL							
92	Warning: One or							
93	Warning: Recomme	nded UCL ex	ceeds the n	naximum obs	ervation			
94		0, 110;						
95	Note: Suggestions regarding the selection of a 95					• • • • • • • • • • • • • • • • • • • •	oriate 95% UCI	
96	Recommendations are ba							
97	These recommendations are based upon the res						` ′	
98	However, simulations results will not cover all Real \	vorid data se	ets; for additi	onai insight t	ne user m	ay want to cor	isuit a statistici	an.
99	Corbonala							
100	Carbazole							
101		Canari	Statistics					
102	Total Number of Observations		Jiausucs		Nime	her of Dictinat	Observations	18
103	Number of Detects				inuifii		f Non-Detects	12
104	Number of Detects Number of Distinct Detects				Nium		t Non-Detects	9
105	Number of Distinct Detects Minimum Detect				inuff		m Non-Detect	53
106	Maximum Detec						m Non-Detect	270
107	Variance Detects						m Non-Detects	54.55%
108	variance Detects	1000				Feicell	. NON-DERECIS	J + .JJ /0

109	Α		В		С			D	Mear	E n Detects		F .4		G		Н		I			J	SI	K D Dete	cts	L 36.14
110								M	ediar	Detects	80	.5										C,	V Dete	cts	0.513
111								Skew	vness	Detects	-0.0	927									Kur	rtosi	s Dete	cts	-1.824
112						l	Mear	n of Lo	oggeo	d Detects	4.	105								SD	of Lo	gge	d Dete	cts	0.608
113													1												
114										Norr	nal GC	F Tes	t on D	etects	Only	/									
115						Sł	napir	o Wilk	Test	t Statistic	0.	887						Shapir	o Wil	k GO	F Test	t			
116					5	5% Sh	napiro) Wilk	Critic	cal Value	0.	842		De	etect	ted Da	ata a					ignif	ficance	Leve	əl
117							Lil	liefors	Test	Statistic	0.	225						Lillie	fors (GOF	Test				
118						5%	% Lill	iefors	Critic	cal Value	0.	262		De	etect	ted Da	ata a	appear	Norr	nal at	5% S	ignif	ficance	Leve	əl
119								D	etect	ed Data	appea	r Norm	nal at !	5% Sig	gnifica	ance L	_eve	el							
120																									
121					Kap	olan-N	/leier	(KM)		stics usi	-		ritical \	Values	and	other	No	nparan							
122									ŀ	KM Mear		.11							K۱				r of Me		8.183
123										KM SD		.27										,	BCA) U		67.29
124										Л (t) UCL		.19						95% K	•				trap) U		67.12
125										1 (z) UCL		.57											rap t U		68.99
126									•	hev UCL		.66										•	shev U		88.78
127						97.	5% k	KM Ch	ebys	hev UCL	104	.2							ξ	99% K	(M Ch	ebys	shev U	CL	134.5
128																									
129										ma GOF			etecte	d Obse	ervati										
130										Statistic		639						dersor							
131							5%			cal Value		731	С	etecte	ed da	ta app							Signifi	canc	e Level
132										Statistic		258						olmogo							
133										cal Value		268								istribu	ited at	: 5%	Signifi	canc	e Level
134							D	etecte	ed dat	ta appea	r Gamı	ma Dis	stribut	ed at 5	% Si	ignifica	anc	e Leve	el						
135																									
136										Gamma) Dete	cted Da	ata C	Only									
137										at (MLE)		516								•			ted ML		2.528
138								Ih		at (MLE)		.02						11	neta s	•			cted ML	•	27.85
139										at (MLE)		.33								nu s	star (bi	ias c	correcte	∌d)	50.56
140								IV	/lean	(detects)	70	.4													
141									Com	ma BOS	Ctotic	tion u	nina In	nnutad	l Non	Doto	oto								
142				G	POS	may	not h			ma ROS en data :				•				onvotio	ne at	multir	alo DI				
143		GE	20S m			•				letects is					-					-			<15_°	20)	
144		- Gi	100 11	iay ii	ot be					s, GROS				-		-			-		Siliali	(e.g.	., \10-2		
145						1 01	300			is espec			-						iia b	1 43					
146			For a	ıamm	na dis	tribut	ed de			a, BTVs	•			•					strihı	ıtion o	n KM	esti	mates		
147			. o g	,			u			Minimum			_, 50	Junpa		9 (9411						Me	an	53.83
148										/laximum													Medi		41.68
149										SD		.41												CV	0.546
150									k h	at (MLE)		131							k s	star (h	oias co	orrec	ted ML		3.598
151 152								Th		at (MLE)		.03						TI		•			cted ML	1	14.96
153										at (MLE)										`			correcte		158.3
153					Adiu	usted	Leve	l of Si		cance (β	`	386									, , ,			-	
155			Ap	proxi						58.33, α							Ac	djusted	Chi	Squar	e Valu	ue (1	158.33,	β)	128.3
156		95%	-	-						n n>=50		.43				95%		-		-			nen n<		66.4
157					-			•			1										•				
158								E	Estim	ates of G	amma	Parar	meters	s using	KM	Estima	ate	s							
159										ean (KM)		.11											SD (K	M)	32.27
160								\		nce (KM)											SE	of M	lean (K	•	8.183
161										hat (KM)		709											star (K		2.37
162										hat (KM)													star (K	- 1	104.3
102										\·	1		1											_′_	

	163	А	В	С		D	E theta hat (KM	F 1) 19.6	G	Н	I	J	K theta star (KM)	L 22.41
1956 S9% gamma percentile (RM) 19.5 S9% gamma percentile (RM) 163.9	164				80% g	jamma p	ercentile (KN	77.92			90	% gamma	percentile (KM)	99.31
Camma Kaplan Meler (MM) Statistics	165				95% g	jamma p	ercentile (KM	1) 119.5			99	% gamma	percentile (KM)	163.9
Approximate Chi Square Value (104.29, p) 81.73	166												·	
195 195	167							-	leier (KM) Sta					
Lognormal GOF Test on Detected Observations Only	168					'		*					, , ,	
	169	95% (Gamma Ap	oproximat	te KM-L	JCL (use	when n>=50	0) 67.78		95% Gamm	na Adjusted	KM-UCL ((use when n<50)	69.03
Shapiro Wilk Toest Statistic 0.862	170										_			
172	171								etected Obse	ervations On				
	172					•			ļ .		•			
175	173			5					Det	ected Data a	• • •			evel
									Dot	acted Data a				ovol
1777 Lognomal ROS Statistics Using Imputed Non-Detects 3.842					3 /0							ioiiiai at 5	5 % Significance Li	3761
178							iecieu Dala e	appear Logilo	illiai at 5 /0 5	igillicance L	.6761			
Mean in Original Scale S2.9.3 Mean in Log Scale 3.842							ognormal Ro	OS Statistics	Usina Impute	d Non-Detec	rts			
SD in Original Scale 29.52 SD in Log Scale 0.496					<u> </u>					a Hon Boloc		Me	ean in Log Scale	3.842
181							-						•	
182 95% BCA Bootstrap UCL 66.92 95% Bootstrap t UCL 66.95 183 95% H-UCL (Log ROS) 65.41			95% t	UCL (ass	sumes r		•				95%		-	
183				`				7					•	
184					9	5% H-U	CL (Log ROS	65.41					-	
185														
March Marc				S	Statistic	s using l	KM estimates	on Logged D	Data and Ass	uming Logno	ormal Distrib	oution		
RM SD (logged) 0.558 95% Critical H Value (KM-Log) 2.052	186					KMI	Mean (logged	d) 3.807					KM Geo Mean	45
March Marc	187					KI	M SD (logged	d) 0.558			95%	Critical H	Value (KM-Log)	2.052
Second Standard Error of Mean (logged) 0.148	188			KM Sta	andard I	Error of I	Mean (logged	d) 0.148				95% H	I-UCL (KM -Log)	67.47
DL/2 Statistics DL/2 Normal DL/2 Statistics DL/2 Log-Transformed Mean in Log Scale 3.931 Mean in Original Scale 40.65 SD in Log Scale 0.658 Begin Log Scale 95% t UCL (Assumes normality) 77.57 95% H-Stat UCL 86.21 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use Suggested UCL to Use Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. However, simulations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Ceneral Statistics Total Number of Observations 22 Number of Distinct Observations 14 Number of Distinct Detects 1 Number of Distinct Observations 14 Number of Distinct Detects 1 Number of Distinct Observations 14 Number of Distinct Detects 1 Number of Distinct Observations 14 Number of Distinct Detects 1 Number of Distinct Observations 14	189							*			95%	Critical H	Value (KM-Log)	2.052
192 193 194 195	190			KM Sta	andard I	Error of I	Mean (logged	d) 0.148						
193	191													
Mean in Original Scale 62.66 Mean in Log Scale 3.931 195	192							DL/2 S	Statistics					
SD in Original Scale 40.65 SD in Log Scale 0.658	193			D			0	00.00			DL/2 Log-			0.004
196 95% t UCL (Assumes normality) 77.57 95% H-Stat UCL 86.21 197 DL/2 is not a recommended method, provided for comparisons and historical reasons 198 199 Nonparametric Distribution Free UCL Statistics 200 Detected Data appear Normal Distributed at 5% Significance Level 201 202 Suggested UCL to Use 203 95% KM (t) UCL 67.19 204 205 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 206 Recommendations are based upon data size, data distribution, and skewness. 207 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). 208 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 209 210 Dimethyl phthalate 211 212 General Statistics 22 Number of Distinct Observations 14 214 Number of Detects 1 Number of Distinct Non-Detects 21 215 Number of Distinct Detects 1 Number of Distinct Non-Detects 21	194				<u> </u>		-							
DL/2 is not a recommended method, provided for comparisons and historical reasons 198	195			05(0/ + 1.101		Ū						-	
Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use Suggested UCL to Use Suggested UCL to Use Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate General Statistics Total Number of Observations 22 Number of Distinct Observations 14 Number of Detects 1 Number of Non-Detects 21 Number of Distinct Non-Detects 13						`	•	' '	dod for comp	orioono ond l	hiotorical ro		95% H-Stat UCL	80.21
Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use Suggested UCL to Use Suggested UCL to Use Suggested UCL to Use Once the most appropriate 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate Total Number of Observations 22 Number of Distinct Observations 14 Number of Detects 1 Number of Distinct Non-Detects 21 Number of Distinct Non-Detects 11 Number of Distinct Non-Detects 13					/L/Z IS II	iot a rec	ommended n	neurou, provid	dea for compa	ansons and i	nistorical re	asons		
Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use Suggested UCL to Use Suggested UCL to Use Suggested UCL to Use Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate Total Number of Observations Seneral Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects							Nonnaran	netric Distribu	tion Free LIC	L Statistics				
Suggested UCL to Use Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Suggested UCL to Use Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Suggested UCL to Use Recommendations These recommendations are based upon data size, data distribution, and skewness. General Statistics summarized in Singh, Maichle, and Lee (2006). Bell of the simulation studies summarized in Singh, Maichle, and Lee (2006). General Statistics summarized in Singh, Maichle, and Lee (2006). Suggested UCL to Use						Detecte	-				ce Level			
Suggested UCL to Use 203 95% KM (t) UCL 67.19 204 205 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 206 Recommendations are based upon data size, data distribution, and skewness. 207 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). 208 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 209 210 Dimethyl phthalate 211 212 General Statistics 213 Total Number of Observations 22 Number of Distinct Observations 14 214 Number of Detects 1 Number of Non-Detects 21 215 Number of Distinct Detects 1 Number of Distinct Non-Detects 13 216 Number of Distinct Non-Detects 13 217 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 218 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 219 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 210 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 211 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 212 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 213 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 214 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 215 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 216 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 13 217 Number of Distinct Non-Detects 1 Number of Distinct Non-Detects 14 218 Number of Detects 1 Number of Distinct Non-Detects 13 219 Number of Detects 1 Number of Detects 1 210 Number of Detects 1 Number of Detects 1 210 Number of Detects 1 Number of Detects 1 211 Number of Detects 1 Number of Detects							appo							
203 95% KM (t) UCL 67.19 204 205 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 206 Recommendations are based upon data size, data distribution, and skewness. 207 These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). 208 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 209 210 Dimethyl phthalate 211 212 General Statistics 213 Total Number of Observations 22 Number of Distinct Observations 14 214 Number of Detects 1 Number of Distinct Non-Detects 21 215 Number of Distinct Detects 1 Number of Distinct Non-Detects 13								Suggested	UCL to Use					
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate General Statistics Total Number of Observations 22 Number of Distinct Observations 14 Number of Detects 1 Number of Distinct Non-Detects 21 Number of Distinct Detects 1 Number of Distinct Non-Detects 13						95	% KM (t) UC							
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate Ceneral Statistics Total Number of Observations Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects							<u> </u>		<u> </u>					
Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate Ceneral Statistics Total Number of Observations 22 Number of Distinct Observations 14 Number of Detects 1 Number of Non-Detects 21 Number of Distinct Detects 1 Number of Distinct Non-Detects 13		N	ote: Sugge	estions re	garding	g the sele	ection of a 95	5% UCL are p	rovided to he	lp the user to	o select the	most appi	ropriate 95% UCL	
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate Ceneral Statistics Total Number of Observations Number of Detects Number of Non-Detects Number of Distinct Non-Detects	206				Rec	commen	dations are b	ased upon da	ata size, data	distribution,	and skewn	ess.		
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Dimethyl phthalate General Statistics Total Number of Observations 22	207	7	hese reco	ommenda	itions a	re based	upon the re	sults of the si	mulation stud	ies summari	zed in Sing	h, Maichle	, and Lee (2006).	
209 210 Dimethyl phthalate 211 212 General Statistics 22 Number of Distinct Observations 14 214 Number of Distinct Detects 1 Number of Distinct Non-Detects 21 215 Number of Distinct Detects 1 Number of Distinct Non-Detects 13 Number of Distinct Non-Detects 14 Number of Distinct Non-Detects 15 Number of Distinct Non-Detects 1	208	How	ever, simi	ulations re	esults v	will not co	over all Real	World data se	ets; for addition	onal insight t	he user ma	y want to c	consult a statistici	an.
210 Dimethyl phthalate 211 General Statistics 212 Total Number of Observations 22 Number of Distinct Observations 14 214 Number of Detects 1 Number of Non-Detects 21 215 Number of Distinct Detects 1 Number of Distinct Non-Detects 13	209													
211 212 General Statistics 213 Total Number of Observations 22 Number of Distinct Observations 14 214 Number of Detects 1 Number of Non-Detects 21 215 Number of Distinct Detects 1 Number of Distinct Non-Detects 13	210	Dimethyl phth	nalate											
General Statistics213Total Number of Observations22Number of Distinct Observations14214Number of Detects1Number of Non-Detects21215Number of Distinct Detects1Number of Distinct Non-Detects13	211													
Number of Detects 1 Number of Non-Detects 21 Number of Distinct Detects 1 Number of Distinct Non-Detects 13	212								Statistics					
Number of Distinct Detects 1 Number of Distinct Non-Detects 13	213			T	Γotal Νι						Numb			
210	214		_											
216	215				Num	ber of D	istinct Detect	s 1			Numb	er of Disti	nct Non-Detects	13
	216													

217	A B C D E Warning: Only one distinct data value was detected	F d! ProUCL (o	G H I J K r any other software) should not be used on such a data set!	L
218	It is suggested to use alternative site specific values determine	ined by the P	roject Team to estimate environmental parameters (e.g., EPC,	BTV).
219				
220	The data set for vari	iable Dimethy	/l phthalate was not processed!	
221				
222				
	Sulfide			
224				
225		General	Statistics	
226	Total Number of Observations	22	Number of Distinct Observations	18
227	Number of Detects	17	Number of Non-Detects	5
228	Number of Distinct Detects	15	Number of Distinct Non-Detects	3
229	Minimum Detect	19	Minimum Non-Detect	32
230	Maximum Detect	1500	Maximum Non-Detect	36
231	Variance Detects	224026	Percent Non-Detects	22.73%
232	Mean Detects	280.3	SD Detects	473.3
233	Median Detects	83	CV Detects	1.689
234	Skewness Detects	2.337	Kurtosis Detects	4.433
235	Mean of Logged Detects	4.659	SD of Logged Detects	1.368
236		1		
237	Norn	nal GOF Tes	t on Detects Only	
238	Shapiro Wilk Test Statistic	0.57	Shapiro Wilk GOF Test	
239	5% Shapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level]
240	Lilliefors Test Statistic	0.307	Lilliefors GOF Test	
241	5% Lilliefors Critical Value	0.207	Detected Data Not Normal at 5% Significance Level	
242	Detected Data	a Not Norma	at 5% Significance Level	
243			-	
244	Kaplan-Meier (KM) Statistics usin	ng Normal Cr	itical Values and other Nonparametric UCLs	
245	KM Mean	221.6	KM Standard Error of Mean	91.85
246	KM SD	417.9	95% KM (BCA) UCL	370
247	95% KM (t) UCL	379.6	95% KM (Percentile Bootstrap) UCL	374.9
248	95% KM (z) UCL	372.7	95% KM Bootstrap t UCL	814.1
249	90% KM Chebyshev UCL	. 497.1	95% KM Chebyshev UCL	621.9
250	97.5% KM Chebyshev UCL	795.2	99% KM Chebyshev UCL	1135
251	<u> </u>		<u> </u>	
252	Gamma GOF	Tests on De	tected Observations Only	
253	A-D Test Statistic	1.158	Anderson-Darling GOF Test	
254	5% A-D Critical Value	0.787	Detected Data Not Gamma Distributed at 5% Significance	Level
255	K-S Test Statistic	0.26	Kolmogorov-Smirnov GOF	
256	5% K-S Critical Value	0.219	Detected Data Not Gamma Distributed at 5% Significance	Level
257	Detected Data Not 0		ibuted at 5% Significance Level	
258				
258 259	Gamma	Statistics on	Detected Data Only	
260	k hat (MLE)		k star (bias corrected MLE)	0.556
261	Theta hat (MLE)		Theta star (bias corrected MLE)	503.7
262	nu hat (MLE)		nu star (bias corrected)	18.92
262	Mean (detects)			
264	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
265	Gamma ROS	Statistics us	ing Imputed Non-Detects	
265 266			6 NDs with many tied observations at multiple DLs	
			s <1.0, especially when the sample size is small (e.g., <15-20)	
267	-		yield incorrect values of UCLs and BTVs	
268			en the sample size is small.	
269	·		by be computed using gamma distribution on KM estimates	
270	gamma alombatoa aototoa aata, bi vo t		,	

271	Α		В		С	D	E Minimum	F 0.01	G	Н		l		J		K Mean	L 216.6	
272	-						Maximum	1500							M	ledian	56	
273	-						SD	430.3								CV	1.987	
274							k hat (MLE)	0.251					k star	(bias co	rrected	MLE)	0.247	
275						Т	heta hat (MLE)	862.1				Thet	ta star	(bias co	rrected	MLE)	875.9	
276							nu hat (MLE)	11.05					nu	ı star (bi	ias corre	ected)	10.88	
277				Α	djusted	Level of	Significance (β)	0.0386										
278						•	/alue (10.88, α)	^				•		uare Va	•		4.196	
279		95% (Gamma	а Аррг	roximat	e UCL (us	se when n>=50)	523.8		95%	Gamr	ma Adjı	usted l	JCL (us	e when	n<50)	561.6	
280							Estimates of G	amma Parar	meters usino	ı KM Estir	nates							
281							Mean (KM)			,	···aioo				SD	(KM)	417.9	
282							Variance (KM)							SE	of Mear		91.85	
283 284							k hat (KM)									r (KM)	0.273	
285							nu hat (KM)								nu stai		12.02	
286							theta hat (KM)							th	eta sta		811.4	
287					80%	6 gamma	percentile (KM)	331.2				9	00% ga	mma pe	ercentile	e (KM)	660.2	
288					95%	6 gamma	percentile (KM)	1044				9	9% ga	mma pe	ercentile	e (KM)	2054	
289																		
290							Gamn	na Kaplan-Me	eier (KM) St	atistics								
291			App	oroxim	nate Ch	i Square \	/alue (12.02, α)	5.237			Ad	justed (Chi Sq	uare Va	lue (12.	.02, β)	4.906	
292	95	% Gam	nma Ap	proxin	nate KI	Л-UCL (us	se when n>=50)	508.4		95% Ga	mma A	Adjusted	d KM-l	JCL (us	e when	n<50)	542.7	
293																		
294							Lognormal GC	F Test on De	etected Obs	ervations	Only							
295					S	hapiro Wi	lk Test Statistic	0.924			SI	hapiro \	Wilk G	OF Test	1			
296					5% S	hapiro Wil	lk Critical Value	0.892	De	tected Da	ta app	ear Log	gnorma	ıl at 5%	Signific	ance L	evel	
297						Lilliefo	rs Test Statistic	0.181				Lilliefo						
298					5		rs Critical Value			tected Da			gnorma	at 5%	Signific	ance L	evel	
299						D	etected Data ap	pear Lognor	mal at 5% S	Significand	ce Leve	el						
300																		
301							Lognormal RO		Jsing Impute	ed Non-De	etects			N4		01-	4.047	
302							o Original Scale								in Log		4.247	
303			050/ +1				original Scale					OF	0/ Dawa		in Log		1.435 385.9	
304			95% [(JCL (a			ty of ROS data) Bootstrap UCL					953		entile B 95% Bo			721.8	
305							JCL (Log ROS)							JJ /0 DO	υιοιιαρ	, UCL	121.0	
306						JJ /0 ∏-l	(LUY KUS)	JJJ.4										
307					Static	tics using	KM estimates	on Loaned D	ata and Ass	sumina I o	anorm	al Distr	ibution	1				
308					Julio		Mean (logged)			January EU	g	DIGU			M Geo	Mean	73.45	
309							(M SD (logged)					959	% Critic	cal H Va			3.098	
310				KM :	Standa		f Mean (logged)							5% H-U	•	٠.	452.9	
311 312							KM SD (logged)					959		cal H Va	•	•	3.098	
312				KM	Standa		f Mean (logged)								. (- 3/		
314									1									
315								DL/2 S	tatistics									
316					DL/2 I	Normal					D	L/2 Log	g-Trans	sformed				
317						Mean ir	n Original Scale	220.5						Mean	in Log	Scale	4.249	
318						SD ir	n Original Scale	428.3						SD	in Log	Scale	1.423	
319					95% t l	JCL (Assu	ımes normality)	377.7						95%	% H-Sta	t UCL	523	
320					DL/2	s not a re	commended me	ethod, provid	ed for comp	arisons a	nd hist	orical re	easons	3				
321																		
322							· ·	etric Distribut										
323						Detecte	d Data appear	Lognormal D	istributed at	5% Signi	ficance	e Level						
324																		
							•											

325	Α	В		(С	[D	E		F Suggested	G UCL to Use		Н		I		J		K		L
326					95	% KM	(Cheb	byshev)	UCL	621.9											
327																					
328		Note: Su	ıgges	stions							rovided to he						approp	oriate	95%	6 UCL	
329											ta size, data										
330											nulation stud								•		
331		However, s	simul	lations	result	s will r	not cov	ver all R	leal W	/orld data se	ets; for addition	onal i	nsight	the us	ser ma	y wan	t to con	sult	a sta	ıtisticia	an.
332	A • •																				
	Arsenic																				
334										Conoral	Statistics										
335					Total	Numb	er of C	Observa	tions		Statistics				Numbe	er of F	Distinct	Ohs	envat	tions	20
336					Total			er of De		16					Numbe		mber of				6
337					Nı			tinct De							Numh		Distinct				5
338					140	anibei		imum D							INGITIC		Minimu				4.5
339								imum D									1aximui				22
340								ance De		2.249							Percent				27.27%
341								lean De		3.25							- C100111		D Det		1.5
342								dian De											V Det		0.461
343								ness De		0.132							Kııı		s Det		-0.663
344								gged De								S	D of Lo				0.567
345							J. 20g	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									_ 5, _0	้อฮั			2.007
346									Norm	nal GOF Tes	t on Detects	Only									
347					SI	hapiro	Wilk 7	Test Sta				·,		Sha	apiro W	/ilk G	OF Test	t			
348								Critical \		0.887	D	etecte	ed Data		•		at 5% S		ficanc	e Lev	⁄el
349								Test Sta		0.133					illiefors						
350 351					59	% Lillie	efors C	Critical \	/alue	0.213	D	etecte	ed Data				at 5% S	ignif	ficanc	ce Lev	el
352							De	tected [Data a	appear Norm	l nal at 5% Sig										
353																					
354				Ka	aplan-N	Meier ((KM) S	Statistics	s usin	g Normal Cı	itical Values	and	other N	lonpa	rametr	ic UC	Ls				
355								KM N	Mean	3.193					K	(M Sta	andard	Erro	r of N	/lean	0.359
356								KI	M SD	1.424							95% K	M (E	CA)	UCL	3.759
357							95%	6 KM (t)	UCL	3.811				959	% KM (Perce	ntile Bo	oots	trap)	UCL	3.764
358							95%	KM (z)	UCL	3.784						95%	KM Bo	otst	rap t	UCL	3.818
359					9	90% KI	M Che	byshev	UCL	4.271						95%	KM Ch	ebys	shev	UCL	4.759
360					97.	.5% KI	M Che	byshev	UCL	5.437						99%	KM Ch	ebys	shev	UCL	6.768
361																					
362							G	Samma	GOF		tected Obse	ervatio		-					-		
363								Test Sta									GOF T				
364						5%		Critical \		0.742	Detecte	d dat							Sign	ificand	ce Level
365								Test Sta		0.179							nov GC				
366								Critical \								Distrib	uted at	5%	Sign	ificand	ce Level
367						De	tected	l data ap	ppear	Gamma Dis	stributed at 5	% Się	gnifica	nce L	evel						
368																					
369											Detected D	ata O	nly								
370								k hat (I		4.083							(bias co				3.359
371								eta hat (I	,						Theta		(bias co				0.968
372								nu hat (I		130.7						nu	star (b	ias c	orrec	ted)	107.5
373							Me	ean (det	ects)	3.25											
374							_		 -												
375				~ = -	_						sing Imputed						=				
376											% NDs with r										
377		GROS	may	not be							s <1.0, espe						small	(e.g	., <15	(20-ز	
378					Fo	r such	situati	ions, Gl	KUS I	method may	yield incorre	ect va	lues of	t UCL	s and E	BIVs					

379	A B C D E This is espe	F cially true whe	G en the sample si	H ze is sma	l II.	J	К	L
380	For gamma distributed detected data, BTVs	and UCLs ma	ay be computed	using gar	mma distribu	ution on KM	estimates	
381	Minimur	m 0.7					Mean	3.15
382	Maximur	m 5.9					Median	3.085
383	SI	D 1.296					CV	0.411
384	k hat (MLE	5.34			k	star (bias cor	rected MLE)	4.642
385	Theta hat (MLE	0.59			Theta	star (bias co	rrected MLE)	0.679
386	nu hat (MLE	234.9				nu star (bia	as corrected)	204.2
387	Adjusted Level of Significance (3) 0.0386						
388	Approximate Chi Square Value (204.24, o	α) 172.2		Α	djusted Chi	Square Valu	e (204.24, β)	170
389	95% Gamma Approximate UCL (use when n>=50	0) 3.737		95% Ga	mma Adjus	ted UCL (use	when n<50)	3.786
390		1						
391	Estimates of	Gamma Parar	neters using KM	1 Estimate	s			
392	Mean (KN	1) 3.193					SD (KM)	1.424
393	Variance (KN	1) 2.029				SE o	of Mean (KM)	0.359
394	k hat (KN	1) 5.025					k star (KM)	4.37
395	nu hat (KM	1) 221.1					nu star (KM)	192.3
396	theta hat (KN	1) 0.635				the	eta star (KM)	0.731
397	80% gamma percentile (KN	4.358			909	% gamma pe	rcentile (KM)	5.24
398	95% gamma percentile (KN	n) 6.048			999	% gamma pe	rcentile (KM)	7.767
399								
400	Gam	ma Kaplan-M	eier (KM) Statist	tics				
401	Approximate Chi Square Value (192.28, o	a) 161.2		Α	djusted Chi	Square Valu	e (192.28, β)	159.1
402	95% Gamma Approximate KM-UCL (use when n>=50	0) 3.809	95	% Gamm	a Adjusted I	KM-UCL (use	when n<50)	3.86
403			1					
404	Lognormal G	OF Test on D	etected Observa	ations Onl	у			
405	Shapiro Wilk Test Statisti	ic 0.92			Shapiro Wi	lk GOF Test		
406	5% Shapiro Wilk Critical Valu	e 0.887	Detecte	ed Data a	ppear Logno	ormal at 5% S	Significance Le	evel
407	Lilliefors Test Statisti	ic 0.203			Lilliefors	GOF Test		
408	5% Lilliefors Critical Valu	e 0.213	Detecte	ed Data a	ppear Logno	ormal at 5% S	Significance Le	vel
409	Detected Data a	appear Lognor	mal at 5% Signi	ificance Lo	evel			
410								
411	Lognormal RC	OS Statistics U	Jsing Imputed N	lon-Detec	ts			
412	Mean in Original Scal	le 3.101				Mean	in Log Scale	1.033
413	SD in Original Scal	e 1.313				SD	in Log Scale	0.487
414	95% t UCL (assumes normality of ROS data	a) 3.583			95%	Percentile Bo	ootstrap UCL	3.538
415	95% BCA Bootstrap UC	L 3.574				95% Boo	otstrap t UCL	3.621
416	95% H-UCL (Log ROS	3.906						
417			<u>I</u>					
418	Statistics using KM estimates	on Logged D	ata and Assumi	ng Logno	rmal Distribi	ution		
419	KM Mean (logged	d) 1.035				KI	M Geo Mean	2.814
420	KM SD (logged	d) 0.546			95%	Critical H Val	lue (KM-Log)	2.04
421	KM Standard Error of Mean (logged	d) 0.14				95% H-UC	CL (KM -Log)	4.165
422	KM SD (logged	d) 0.546			95%	Critical H Val	lue (KM-Log)	2.04
423	KM Standard Error of Mean (logged	d) 0.14						
424			<u>I</u>					
425		DL/2 S	tatistics					
426	DL/2 Normal				DL/2 Log-T	ransformed		
427	Mean in Original Scal	le 4.184				Mean	in Log Scale	1.234
428	SD in Original Scal	e 2.67				SD	in Log Scale	0.666
429	95% t UCL (Assumes normality	y) 5.164				95%	H-Stat UCL	5.873
430	DL/2 is not a recommended n	nethod, provid	ed for comparis	ons and h	istorical rea	sons		
431								
432	Nonparan	netric Distribut	ion Free UCL S	tatistics				

433	Α	В		С	D Detecte	E ed Data appea	F r Normal Dis	G tributed at 5%	H % Significan	ce Level	J	K	L
434													
435							Suggested	UCL to Use					-
436					95	5% KM (t) UCL	3.811						
437													
438		Note: Sug	gestion	s regard	ling the sel	ection of a 95%	% UCL are pr	ovided to hel	p the user to	o select the r	most approp	riate 95% UC	L.
439				F	Recommen	dations are bas	sed upon dat	a size, data	distribution,	and skewnes	SS.		
440		These re	comme	ndations	s are based	d upon the resu	ults of the sin	nulation studi	es summari	ized in Singh	, Maichle, ar	nd Lee (2006)	
441		lowever, sir	mulatior	ns result	ts will not co	over all Real W	Vorld data se	ts; for additio	nal insight t	he user may	want to con	sult a statistic	ian.
521													
522													
	ron												
524													
525							General	Statistics					
526				Total	Number of	f Observations	22			Numbe	r of Distinct	Observations	22
527										Number	r of Missing	Observations	0
528						Minimum	3500					Mean	37114
529						Maximum	210000					Median	15000
530						SD	49221				Std. E	Error of Mean	10494
531					Coefficie	ent of Variation	1.326					Skewness	2.374
532							1	<u>L</u>					
533							Normal G	OF Test					
534				S	hapiro Wilk	k Test Statistic	0.704			Shapiro Wi	lk GOF Test	<u> </u>	
535				5% SI	hapiro Wilk	Critical Value	0.911		Data No	ot Normal at !	5% Significa	nce Level	
536					Lilliefors	s Test Statistic	0.247			Lilliefors	GOF Test		
537				5	% Lilliefors	Critical Value	0.184		Data No	ot Normal at	5% Significa	nce Level	
538						Data Not	t Normal at 5	∟ % Significan∉					
539													
540						As	suming Norn	nal Distribution	on				
541				95% No	ormal UCL					6 UCLs (Adju	sted for Ske	wness)	
					95% S	tudent's-t UCL	55171			, ,		(Chen-1995)	60050
542 543) ohnson-1978)	
											`	<u> </u>	
544							Gamma (GOF Test					
545					Α-Γ) Test Statistic	·		Ande	rson-Darling	Gamma GO)F Test	
546						Critical Value		Da		_		gnificance Le	vel
547						S Test Statistic				gorov-Smirno	· ·	<u> </u>	
548						Critical Value		Da				gnificance Le	vel
549						Data Not Gamr						5 2230 20	
550 EE1													
551							Gamma	Statistics					
552						k hat (MLE)				k :	star (bias co	rrected MLE)	0.729
553 554					Tr	neta hat (MLE)					•	rrected MLE)	
554						nu hat (MLE)					•	ias corrected)	
555 556				MI	LE Mean (r	oias corrected)						ias corrected)	
556										Approximate	,	e Value (0.05)	
557				Adius	sted Level	of Significance	0.0386					Square Value	
558											,	4	
559						As	suming Gam	ma Distributi	on				
560		95% Annro	oximate	Gamma	a UCL (use	when n>=50))				diusted Gami	ma UCL (use	e when n<50)	61288
561							133.00				302 (43)		3.230
562							Lognormal	GOF Test					
563				Q	Shaniro Will	k Test Statistic		30, 100	Sha	piro Wilk Log	Inormal GOF	- Test	
564					•	Critical Value			•			ificance Level	
565				370 01	apiio vviik	. Jimoui value	3.511		Jaila appec	Lognonnai	. a. 0 /0 Olgili		

566	Α	E	В		С	Li	D Iliefors	E Test Statist	ic	F 0.175	G			H Li	lliefors L	.ogno		J GOF T	est	K	L	
567					5	5% Lil	liefors (Critical Valu	ıe	0.184			Data	appe	ar Logno	ormal	at 5%	Signi	fican	ce Leve	اد	
568								Data appe	ar L	ognormal :	at 5% S	ignifi	icance	Level								
569	-																					
570	-									Lognorma	l Statist	ics										
571						Minir	num of	Logged Da	ta	8.161							М	ean o	f logg	ged Data	a 9.78	9
572					N	Maxir	num of	Logged Da	ta	12.25								SD of	f logg	jed Data	a 1.25	
573	-																					
574								As	sum	ning Logno	rmal Di	stribu	ution								-	
575								95% H-UC	CL 8	37050					(90% (Cheby	/shev	(MVL	JE) UCI	T1222	
576					95%	Chel	yshev	(MVUE) UC	CL 8	36832					97	7.5% (Cheby	/shev	(MVL	JE) UCI	L 108499	
577					99%	Chel	yshev	(MVUE) UC	CL 1	51058												
578																						
579								Nonparar	netri	ic Distribut	ion Fre	e UC	L Sta	tistics								
580						Data	appea	ar to follow a	a Dis	scernible D	Distributi	ion a	t 5% S	Signific	ance Le	evel						
581																						
582								Nonp	oarai	metric Dist	tribution	Free	e UCL	.s								
583							9:	5% CLT UC	CL 5	54375							ç	95% Ja	ackkr	nife UCI	L 55171	
584					95%	Star	dard B	ootstrap UC	CL 5	53644							95	% Bo	otstra	ap-t UCI	L 69220	
585					9	95% I	Hall's B	ootstrap UC	CL 1:	20183					g	95% F	Percer	ntile B	ootst	rap UCI	L 55214	
586					!	95%	BCA B	ootstrap UC	CL 5	59673												
587				9	90% Ch	nebys	hev(Me	ean, Sd) UC	CL 6	68595					959	% Ch	ebysh	nev(Me	ean, S	Sd) UCI	L 82856	
588				97.	.5% Ch	nebys	hev(Me	ean, Sd) UC	CL 1	02648					999	% Ch	ebysh	nev(Me	ean, S	Sd) UCI	L 141527	
589																						
590									S	Suggested	UCL to	Use										
591				9	5% Ch	ebys	nev (Me	ean, Sd) UC	CL 8	32856												
592																						
593		Note: S	Sugges	stions	regard	ding t	he sele	ction of a 9	5% l	UCL are p	rovided	to he	elp the	user t	o select	the n	nost a	pprop	riate	95% U	DL.	
594					F	Reco	nmend	ations are b	ase	ed upon da	ta size,	data	distri	bution,	and ske	wnes	SS.					
595		These	erecor	mmen	dations	s are	based	upon the re	sults	s of the sin	nulation	stud	lies su	ımmar	ized in S	Singh,	, Maic	hle, ar	nd Le	e (2006	i).	
596	Н	lowever	, simul	lations	s result	ts wil	not co	ver all Real	Wo	orld data se	ts; for a	dditio	onal ii	nsight 1	the user	may	want 1	to con	sult a	statisti	cian.	
597																						
598																						
599 M a	anganes	e																				
600																						
601										General	Statistic	S										
602					Total	l Nun	ber of	Observation	าร	22					Nu	ımber	of Di	stinct	Obse	ervations	s 20	
603															Nu	mber	of Mi	ssing	Obse	ervations		
604								Minimu		120										Mear		
605								Maximu		16000										Mediar		
606										4735								Std. E	Error	of Mea		
607						Cc	efficien	nt of Variation	on	1.337									Sk	ewnes	s 1.72	3
608																						
609										Normal (GOF Te	st										
610								Test Statist		0.732					Shapir							
611					5% S			Critical Valu		0.911				Data No	ot Norma				nce l	_evel		
612								Test Statist		0.235							GOF 1					
613					5	5% Li	liefors	Critical Valu		0.184					ot Norma	al at 5	5% Sig	gnifica	nce I	_evel		
614								Data N	lot N	lormal at 5	% Signi	fican	nce Le	vel								
615																						
616							·	/	Assu	ıming Norr	nal Dist	ributi	ion									
617				9	95% No									95%	UCLs (•		7
618							95% Stu	udent's-t UC	CL :	5279					95% Ad	-			•		1	
619															95% M	lodifie	ed-t U	CL (Jo	hnsc	on-1978	5341	
											1											

	A B C D E	F	G	Н	I	J	K	L
620		Gamma C	OF Test					
621	A-D Test Statistic	0.896		Ander	son-Darling	Gamma GOF	Test	
622	5% A-D Critical Value	0.798	Dat			uted at 5% Sign		el
623 624	K-S Test Statistic	0.214				ov Gamma GO		
	5% K-S Critical Value	0.195	Dat			uted at 5% Sign		el
625	Data Not Gamm	na Distribute						
626 627								
628		Gamma S	Statistics					
629	k hat (MLE)	0.57			k	star (bias corre	ected MLE)	0.523
630	Theta hat (MLE)	6211			Theta	star (bias corre	ected MLE)	6775
631	nu hat (MLE)	25.09				nu star (bias	corrected)	23.01
632	MLE Mean (bias corrected)	3542				MLE Sd (bias	corrected)	4899
633	L			,	Approximat	te Chi Square V	'alue (0.05)	13.1
634	Adjusted Level of Significance	0.0386			F	Adjusted Chi Sq	uare Value	12.54
635								-
636	Ass	uming Gami	ma Distributio	n				
637	95% Approximate Gamma UCL (use when n>=50))	6223		95% Ad	justed Gan	nma UCL (use v	when n<50)	6500
638	1	l						
639		Lognormal	GOF Test					
640	Shapiro Wilk Test Statistic	0.9		Shap	iro Wilk Lo	gnormal GOF T	est	
641	5% Shapiro Wilk Critical Value	0.911		Data Not I	Lognormal	at 5% Significa	nce Level	
642	Lilliefors Test Statistic	0.182		Lill	iefors Logn	ormal GOF Tes	st	
643	5% Lilliefors Critical Value	0.184			•	al at 5% Signific	ance Level	
644	Data appear Approx	imate Logno	ormal at 5% S	ignificance	Level			
645								
646		Lognormal	Statistics					
647	Minimum of Logged Data	4.787					ogged Data	7.081
648	Maximum of Logged Data	9.68				SD of lo	ogged Data	1.683
649								
650			rmal Distributi	on				
651		18697				Chebyshev (M	-	9988
652	, , ,	12571			97.5%	Chebyshev (M	IVUE) UCL	16155
653	99% Chebyshev (MVUE) UCL	23196						
654				.				
655	•		on Free UCL					
656	Data appear to follow a Di	iscemble D	istribution at a	5% Significa	ance Level			
657	Nonnow	ometrie Diet	ibution Eroo I	ICI o				
658		5203	ibution Free U	JCLS		05% Jac	kknife UCL	5279
659		5180				95% Jac		6114
660	-	5893			Q5%	Percentile Boo	•	5244
661	·	5550			JJ /0	. Gracifule DOC	ap OOL	J2-17
662	·	6571			95% C	Chebyshev(Mea	n. Sd) UCI	7942
663	7	9846				Chebyshev(Mea	,	13586
664	57.575 51.55 Shiot (Modali, 5d) 50E	20.0					, 53, 502	
665		Suggested I	JCL to Use					
666		7942						
667 668	22.12 2.1.22,5.1.51 (52.1., 53) 552							
668	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help	the user to	select the	most appropria	ite 95% UCI	
669 670	Recommendations are base		<u> </u>					
670 671	These recommendations are based upon the result						Lee (2006).	
	However, simulations results will not cover all Real Wo							
672 673	,			- 3 4		,		
0/3								

674	A Thallium	В	С)	E		F	G	F	1	I			J		K	L
675																		
676							(General	Statistics									
677			Tota	al Numbe	er of O	bservation	ons	22				Νι	umbei	r of Di	stinct C)bserv	ations	17
678				N	Numbe	r of Dete	ects	2						Num	ber of	Non-D	Detects	20
679			ı	Number	of Dist	nct Dete	ects	2				N	lumbe	er of D	istinct	Non-D	etects	15
680					Minir	num Det	tect	4.8						М	inimum	Non-	Detect	0.84
681					Maxii	num Det	tect	6.7						Ма	aximum	Non-	Detect	22
682					Varia	nce Dete	ects	1.805						Р	ercent	Non-D	Detects	90.91%
683					Me	ean Dete	ects	5.75								SD D	etects	1.344
684					Med	ian Dete	ects	5.75								CV D	etects	0.234
685				5	Skewn	ess Dete	ects N	N/A							Kurt	osis D	etects	N/A
686				Mean	of Log	ged Dete	ects	1.735						SD	of Log	ged D	Detects	0.236
687																		
688						_	-		only 2 Detec									
689			<u> </u>	This is no	ot eno	ugh to co	ompute	meaning	ful or reliab	le statis	tics a	nd estir	nates					
690																		
691																		
692									t on Detects									
693	<u> </u>					Not	Enougl	h Data to	Perform G	OF Test								
694																		
695			Kaplan	n-Meier (l	KM) S				itical Values	and otl	ner N	onpara						
696						KM Me		1.415					K۱				f Mean	
697						KM		1.601								•	A) UCL	N/A
698						KM (t) U		2.355				95% I	•		tile Bo			N/A
699				000/ 1/1		KM (z) U		2.314							KM Boo			N/A
700						yshev U		3.054									v UCL	3.797
701	<u> </u>		9	7.5% KN	VI Chel	yshev U	JCL	4.827					ç	99% K	M Che	byshe	v UCL	6.852
702	 					C	OF Too	to on Do	tected Obs		- O-l							
703	 				G							у						
704	<u> </u>					NOU	Enougi	n Data to	Perform G	OF Test								
705						Com	ma Sta	tictics on	Detected D	oto Onl	.,							
706	<u> </u>					k hat (Ml		36.3	Detected L	ala OIII	у		l d	star (h	iae cor	rected	d MLE)	N/A
707						a hat (MI	,	0.158				Т		-	ias cor			N/A
708						u hat (MI	,	45.2				•		•	tar (bia		<i>'</i>	N/A
709						an (detec		5.75							(2.0			
710						(5.0.0.0	/											
711 712					Est	imates o	of Gamr	na Parar	neters using	, KM Es	timate	es						
713						Mean (K		1.415		. – -						SI	D (KM)	1.601
714						riance (K		2.565							SE o		n (KM)	0.546
715						k hat (K	,	0.781									ar (KM)	0.704
716						nu hat (K	KM)	34.35									ar (KM)	31
717					the	ta hat (K	KM)	1.813							the	eta sta	ar (KM)	2.009
718			80)% gamn	na per	centile (K	KM)	2.325					90%	6 gam	ma pei	rcentil	e (KM)	3.546
719			95	5% gamn	na per	centile (K	KM)	4.805					99%	6 gam	ma pei	rcentil	e (KM)	7.808
720									LL CONTRACTOR OF THE CONTRACTO									
721						Ga	mma K	aplan-Mo	eier (KM) St	atistics								
722												Adj	justed	l Leve	l of Sig	nificar	nce (β)	0.0386
723		Арр	oroximate C	hi Squar	re Valu	e (31.00), α)	19.28				Adjuste	ed Ch	i Squa	are Val	ue (31	.00, β)	18.59
724	95%	Gamma Ap	proximate k	KM-UCL	(use w	hen n>=	=50)	2.275		95% C	amm	na Adjus	sted K	(M-UC	CL (use	when	ı n<50)	2.359
725																		
726					Lo	_			etected Obs			ly						
727						Not	Enougl	h Data to	Perform G	OF Test								

	Α	В	С	D	E	F	G	Н	l	J	K		L
728					I DO	0.04-4:-4:1	1-1 1 4-	d Non Dodge					
729					ognormal ROS		Jsing impute	a Non-Detec	πs 	Man	- i- I CI	- 0	770
730					Original Scale Original Scale						n in Log Scal		.778
731		0E9/ +1	UCL (assume		•				0E9/		D in Log Scale Bootstrap UC		2.804
732		95% [(•	•	•				95%				5.519
733					ootstrap UCL CL (Log ROS)					95% BC	ootstrap t UC	3	.519
734				95% H-UC	L (LOG ROS)	2.090							
735			Ctatic	tico voina V	M estimates of	on Logged D	ote and Ass	umina Loans	mad Dietrib	ution			
736			Statis				ata anu Assi	aming Logno	illiai Distribt		KM Geo Mea	n 1	.052
737					lean (logged)				0.50/				
738			1/11/0: 1		1 SD (logged)				95% (alue (KM-Log	~	2.112
739			KM Standa		lean (logged)						ICL (KM -Log	.,	.69
740					1 SD (logged)				95% (Critical H Va	alue (KM-Log) 2	1.112
741			KM Standa	rd Error of N	lean (logged)	0.212							
742													
743						DL/2 S	tatistics						
744			DL/2 N	Normal					DL/2 Log-T	Fransformed			
745					Original Scale						n in Log Scal		.362
746					Original Scale						o in Log Scale		.212
747				`	nes normality)						% H-Stat UC	∟ 6	.426
748			DL/2 i	s not a reco	mmended me	ethod, provid	led for compa	arisons and h	nistorical rea	sons			
749													
750					Nonparame	etric Distribut	tion Free UC	L Statistics					
751				Data do n	not follow a Di	scernible Dis	stribution at 5	5% Significar	nce Level				
752													
753						Suggested	UCL to Use						
754				95%	% KM (t) UCL	2.355					KM H-UCI	_ 1	.69
755				95% KN	M (BCA) UCL	N/A							
756				Warr	ning: One or n	nore Recom	mended UCI	(s) not avail	able!				
757													
758		Note: Sugge	estions regard	ling the sele	ection of a 95%	6 UCL are pr	rovided to he	Ip the user to	o select the r	nost approp	riate 95% U	CL.	
759			F	Recommend	lations are bas	sed upon da	ta size, data	distribution,	and skewne	SS.		-	
760		These reco	mmendations	s are based	upon the resu	ılts of the sir	nulation stud	ies summari	zed in Singh	, Maichle, a	nd Lee (2006	3).	
761	F	However, simu	ulations result	s will not co	ver all Real V	√orld data se	ts; for addition	onal insight t	he user may	want to cor	sult a statisti	cian.	
762													
, 52													

APPENDIX D

Intake and Risk Calculations

Appendix D-1

Industrial Worker (Surface soil 0 – 2 ft bgs)

Site-specific Composite Worker Equation Inputs for Soil

* Inputted values different from Composite Worker defaults are highlighted.

Variable	Composite Worker Soil Default Value	Form-input Value
A (PEF Dispersion Constant)	16.2302	16.8653
A (VF Dispersion Constant)	11.911	16.8653
A (VF Dispersion Constant - Mass Limit)	11.911	16.8653
B (PEF Dispersion Constant)	18.7762	18.7848
B (VF Dispersion Constant)	18.4385	18.7848
B (VF Dispersion Constant - Mass Limit)	18.4385	18.7848
City _{DEE} (Climate Zone) Selection	Default	Chicago, IL (7)
City _{v/E} (Climate Zone) Selection	Default	Chicago, IL (7)
C (PEF Dispersion Constant)	216.108	215.0624
C (VF Dispersion Constant)	209.7845	215.0624
C (VF Dispersion Constant - Mass Limit)	209.7845	215.0624
d _c (depth of source) m		3.05
foc (fraction organic carbon in soil) g/g	0.006	0.006
$F(x)$ (function dependent on U _/U,) unitless	0.194	0.182
n (total soil porosity) L/L/L	0.43396	0.43396
p, (dry soil bulk density) g/cm ³	1.5	1.5
p, (dry soil bulk density - mass limit) g/cm ³	1.5	1.5
PEF (particulate emission factor) m ³ /kg	1359344438	533937644.86794
p _e (soil particle density) g/cm ⁻³	2.65	2.65
Q/C _{wind} (g/m²-s per kg/m³)	93.77	60.621128543083
Q/C_{vol} (g/m ² -s per kg/m ³)	68.18	60.621128543083
$Q/C_{_{\text{\tiny NA}}}$ (g/m ² -s per kg/m ³)	68.18	60.621128543083
A _c (PEF acres)	0.5	9
A (VF acres)	0.5	9
A _c (VF mass-limit acres)	0.5	9
AF (skin adherence factor - composite worker) mg/cm	² 0.12	0.12
AT _w (averaging time - composite worker)	365	365
BW _w (body weight - composite worker)	80	80
ED _w (exposure duration - composite worker) yr	25	25

Site-specific Composite Worker Equation Inputs for Soil

* Inputted values different from Composite Worker defaults are highlighted.

Variable	Composite Worker Soil Default Value	Form-input Value
EF (exposure frequency - composite worker) day/yr	250	250
ET (exposure time - composite worker) hr	8	8
THQ (target hazard quotient) unitless	0.1	0.1
IR (soil ingestion rate - composite worker) mg/day	100	100
LT (lifetime) yr	70	70
SA (surface area - composite worker) cm ² /day	3527	3527
TR (target risk) unitless	1.0E-06	1.0E-06
T (groundwater temperature) Celsius	25	25
Theta (air-filled soil porosity) L (air-filled soil porosity) L	0.28396	0.28396
Theta (water-filled soil porosity) L (water-filled soil porosity) L (water-filled soil porosity)	0.15	0.15
T (exposure interval) s	819936000	819936000
T (exposure interval) yr	26	26
U _m (mean annual wind speed) m/s	4.69	4.65
U, (equivalent threshold value)	11.32	11.32
V (fraction of vegetative cover) unitless	0.5	0.1
VF _{ml} (volitization factor - mass limit) m ³/kg		10864.578284831

Composite Worker Regional Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	SF _o (mg/kg-day) -1	SF _o Ref	IUR (ug/m ³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref		RfC Ref	GIABS	ABS	RBA
Arsenic, Inorganic	7440-38-2	No	No	Inorganics	1.50E+00	ı	4.30E-03	ı	3.00E-04	ı	1.50E-05	С	1	0.03	0.6
Carbazole	86-74-8	No	No	Organics	-		-		-		-		1	0.1	1
Dimethylphthalate	131-11-3	No	No	Organics	-		-		-		-		1	0.1	1
Iron	7439-89-6	No	No	Inorganics	-		-		7.00E-01	Р	-		1	-	1
Manganese (Non-diet)	7439-96-5	No	No	Inorganics	-		-		2.40E-02	S	5.00E-05	ı	0.04	-	1
Methylcyclohexane	108-87-2	No	Yes	Organics	-		-		-		-		1	-	1
Sulfide	18496-25-8	No	No	Inorganics	-		-		-		-		1	-	1
Thallium (Soluble Salts)	7440-28-0	No	No	Inorganics	-		-		1.00E-05	Χ	-		1	-	1

Composite Worker Regional Screening Levels (RSL) for Soil

Chemical	Soil Saturation Concentration (mg/kg)	S (mg/L)	K _∞ \ (cm³/g)	K _d \ (cm³/g)	HLC (atm-m³/mole)		H` and HLC Ref	Normal Boiling Point BP (K)	BP Ref	Critical Temperature TC (K)
Arsenic, Inorganic	-	-	-	2.90E+01	-	-		888.15	PHYSPROP	1673
Carbazole	-	1.80E+00	9.16E+03	-	1.16E-07	4.74E-06	PHYSPROP	627.85	PHYSPROP	899
Dimethylphthalate	-	4.00E+03	3.16E+01	-	1.97E-07	8.05E-06	EPI	556.85	PHYSPROP	772
Iron	-	-	-	2.50E+01	-	-		3273.15	PERRY	9340
Manganese (Non-diet)	-	-	-	6.50E+01	-	-		2368.15	PHYSPROP	4325
Methylcyclohexane	6.76E+01	1.40E+01	2.34E+02	1.40E+00	4.30E-01	1.76E+01	PHYSPROP	374.05	PHYSPROP	572.3
Sulfide	-	-	-	-	-	-		-		-
Thallium (Soluble Salts)	-	-	-	7.10E+01	-	-		1730.15	PHYSPROP	4648.06

Composite Worker Regional Screening Levels (RSL) for Soil

Chemical	TC Ref	Chemical Type	D _{ia} \ (cm²/s)	D _{iw} (cm ² /s)	D _A \ (cm²/s)	Particulate Emission Factor (m³/kg)	Volatilization Factor (m³/kg)	Ingestion SL TR=1E-06 (mg/kg)	Dermal SL TR=1E-06 (mg/kg)	SL	Carcinogenic SL TR=1E-06 (mg/kg)
Arsenic, Inorganic	CRC89	INORGANIC	-	-	-	5.34E+08	-	3.63E+00	1.72E+01	1.52E+03	2.99E+00
Carbazole	YAWS	SVOC	4.17E-02	7.45E-06	-	5.34E+08	-	-	-	-	-
Dimethylphthalate	CRC89	SVOC	2.99E-02	7.14E-06	-	5.34E+08	-	-	-	-	-
Iron	CRC89	INORGANIC	-	-	-	5.34E+08	-	-	-	-	-
Manganese (Non-diet)	CRC89	INORGANIC	-	-	-	5.34E+08	-	-	-	-	-
Methylcyclohexane	CRC89	VOC	7.00E-02	8.27E-06	1.36E-02	5.34E+08	1.09E+04	-	-	-	-
Sulfide		INORGANIC	-	-	-	5.34E+08	-	-	-	-	-
Thallium (Soluble Salts)	YAWS	INORGANIC	-	-	-	5.34E+08	-	-	-	-	-

Composite Worker Regional Screening Levels (RSL) for Soil

Chemical	Ingestion SL THQ=0.1 (mg/kg)	Dermal SL THQ=0.1 (mg/kg)	Inhalation SL THQ=0.1 (mg/kg)	Noncarcinogenic SL THI=0.1 (mg/kg)	Screening Level (mg/kg)
Arsenic, Inorganic	5.84E+01	2.76E+02	3.51E+03	4.75E+01	2.99E+00 ca*
Carbazole	-	-	-	-	
Dimethylphthalate	-	-	-	-	
Iron	8.18E+04	-	-	8.18E+04	8.18E+04 nc
Manganese (Non-diet)	2.80E+03	-	1.17E+04	2.26E+03	2.26E+03 nc
Methylcyclohexane	-	-	-	-	
Sulfide	-	-	-	-	
Thallium (Soluble Salts)	1.17E+00	-	-	1.17E+00	1.17E+00 nc

Site-specific Composite Worker Risk for Soil

Chemical	SF (mg/kg-day) ⁻¹	SF Ref	IUR (ug/m³)-1	IUR Ref	RfD (mg/kg-day)	RfD Ref	_	RfC Ref	GIABS	ABS	RBA	Soil Saturation Concentration (mg/kg)	S (mg/L)	K \ (cm³/g)	K _d \ (cm³/g)
Arsenic, Inorganic	1.50E+00	I	4.30E-03	l	3.00E-04	I	1.50E-05	С	1	0.03	0.6	-	-	-	2.90E+01
Carbazole	-		-		-		-		1	0.1	1	-	1.80E+00	9.16E+03	-
Dimethylphthalate	-		-		-		-		1	0.1	1	-	4.00E+03	3.16E+01	-
Iron	_		-		7.00E-01	Р	-		1	-	1	-	-	-	2.50E+01
Manganese (Non-diet)	_		-		2.40E-02	S	5.00E-05	l	0.04	-	1	-	-	-	6.50E+01
Methylcyclohexane	-		-		-		-		1	-	1	6.76E+01	1.40E+01	2.34E+02	1.40E+00
Sulfide	-		-		-		-		1	-	1	-	-	-	-
Thallium (Soluble Salts)	-		-		1.00E-05	Χ	-		1	-	1	-	-	-	7.10E+01
*Total Risk/HI	-		-		-		-		-	-	-	-	-	-	-

Site-specific Composite Worker Risk for Soil

Chemical	HLC (atm-m³/mole)		H` and HLC Ref	Normal Boiling Point BP (K)	BP Ref	Critical Temperature TC (K)	TC Ref	Chemical Type	D _{ia} \ (cm²/s)	D _{.Խ} \ (cm²/s)	D _A \ (cm²/s)	Particulate Emission Factor (m³/kg)
Arsenic, Inorganic	-	-		888.15	PHYSPROP	1673	CRC89	INORGANIC	-	-	-	5.34E+08
Carbazole	1.16E-07	4.74E-06	PHYSPROP	627.85	PHYSPROP	899	YAWS	SVOC	4.17E-02	7.45E-06	-	5.34E+08
Dimethylphthalate	1.97E-07	8.05E-06	EPI	556.85	PHYSPROP	772	CRC89	SVOC	2.99E-02	7.14E-06	-	5.34E+08
Iron	-	-		3273.15	PERRY	9340	CRC89	INORGANIC	-	-	-	5.34E+08
Manganese (Non-diet)	-	-		2368.15	PHYSPROP	4325	CRC89	INORGANIC	-	-	-	5.34E+08
Methylcyclohexane	4.30E-01	1.76E+01	PHYSPROP	374.05	PHYSPROP	572.3	CRC89	VOC	7.00E-02	8.27E-06	1.36E-02	5.34E+08
Sulfide	-	-		-		-		INORGANIC	-	-	-	5.34E+08
Thallium (Soluble Salts)	-	-		1730.15	PHYSPROP	4648.06	YAWS	INORGANIC	-	-	-	5.34E+08
*Total Risk/HI	-	-		-		-			-	-	-	-

Site-specific Composite Worker Risk for Soil

	Volatilization Factor	Concentration	Ingestion	Dermal	Inhalation	Carcinogenic	Ingestion	Dermal	Inhalation	Noncarcinogenic
Chemical	(m³/kg)	(mg/kg)	Risk	Risk	Risk	Risk	HQ	HQ	HQ	HI
Arsenic, Inorganic	-	4.94E+00	1.36E-06	2.88E-07	3.24E-09	1.65E-06	8.46E-03	1.79E-03	1.41E-04	1.04E-02
Carbazole	-	1.03E-01	-	-	-	=	-	-	-	-
Dimethylphthalate	-	7.00E-02	-	-	-	-	-	-	-	-
Iron	-	9.48E+04	-	-	-	=	1.16E-01	-	-	1.16E-01
Manganese (Non-diet)	-	1.16E+04	-	-	-	-	4.12E-01	-	9.88E-02	5.11E-01
Methylcyclohexane	1.09E+04	8.00E-02	-	-	-	=	-	-	-	-
Sulfide	-	9.80E+02	-	-	-	-	-	-	-	-
Thallium (Soluble Salts)	-	6.70E+00	-	-	-	_	5.74E-01	-	-	5.74E-01
*Total Risk/HI	_	-	1.36E-06	2.88E-07	3.24E-09	1.65E-06	1.11E+00	1.79E-03	9.90E-02	1.21E+00

Appendix D-2

Re-development Construction Worker (Total soil 0 – 10 ft bgs)

Site-specific Construction Worker Equation Inputs for Soil - Other Construction Activities

* Inputted values different from Construction Worker defaults are highlighted.

Output generated 23JUN2019:20:10:35

Variable		Construction Worker Soil - Other Default Value	Form-input Value
A _{cdox} (areal extent of dozing) acres			2
A _{aveau} (area of excavation site) m ⁻²			8048
A _{c-grade} (areal extent of grading) acres			2
A (PEF Dispersion Constant)		2.4538	2.4538
A _{iii} (areal extent of tilling) acres			0
B _{Ldg} (dozing blade length) m			2
B _{Lorade} (grading blade length) m			2
B (PEF Dispersion Constant)		17.5660	17.5660
C (PEF Dispersion Constant)		189.0426	189.0426
d _{eveau} (average depth of excavation site) m			3.048
F _D Unitless Dispersion Correction Factor		0.185837208	0.185837208
F(x) (function dependant on U _,/U, derived using Cowherd et al. (1985))		0.194	0.194
M _{m-doz} (Gravimetric soil moisture content) %		7.9	7.9
M _{m.evcav} (Gravimetric soil moisture content) %		12	12
M _{wind} (dust emitted by wind erosion) g		51288.84717	35215.654183401
N _{a.doz} (number of times site was dozed)			1
N _{A.chimp} (number of times soil is dumped)		2	2
N _{Acrade} (number of times site was graded)			2
N _{a.sii} (number of times soil is tilled)		2	0
Q/C_{sa} (inverse of the ratio of the geometric mean air concentration to the emission flux at the center of a square source) g/m kg/m ³	² -s per	14.31407	11.063057776908
p _{enil} (density) g/cm ³ - chemical-specific		1.68	1.68
A _c (acres)		0.5	2
s _{dr.} (soil silt content) %		6.9	6.9
AF _{cu} (skin adherence factor - construction worker) mg/cm ²		0.3	0.3
AT_ (averaging time - construction worker) days		365	365
BW _{cw} (body weight - construction worker) kg		80	80
ED_ (exposure duration - construction worker) yr		1	1
EF (exposure frequency - construction worker) day/yr		250	250

Site-specific Construction Worker Equation Inputs for Soil - Other Construction Activities

* Inputted values different from Construction Worker defaults are highlighted.

Variable	Construction Worker Soil - Other Default Value	Form-input Value
ET_ (exposure time - construction worker) hr/day	8	8
THQ (target hazard quotient) unitless	0.1	0.1
IRS (soil ingestion rate - construction worker) mg/day	330	330
LT (lifetime) yr	70	70
SA_ (surface area - construction worker) cm ² /day	3527	3527
TR (target cancer risk) unitless	1.0E-06	1.0E-06
S _{do2} (dozing speed) kph	11.4	11.4
S _{crade} (grading speed) kph	11.4	11.4
s _{sil} (soil silt content) %	18	18
t_ (overall duration of construction) hours	8400	8400
T _c (overall duration of construction) s	30240000	30240000
T (time over which traffic occurs) s	7200000	7200000
T, (overall duration of traffic) s	7200000	7200000
U_ (mean annual wind speed) m/s	4.69	4.69
U, (equivalent threshold value) m/s	11.32	11.32
V (fraction of vegetative cover)	0	0

Chemical	CAS Number	Mutagen?	Volatile?	Chemical Type	SF _o (mg/kg-day) ⁻¹	SF _o Ref	IUR (ug/m³)-1	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m ³)
Arsenic, Inorganic	7440-38-2	No	No	Inorganics	1.50E+00	ı	4.30E-03	1	3.00E-04	I /Chronic	1.50E-05
Carbazole	86-74-8	No	No	Organics	-		-		-		-
Dimethylphthalate	131-11-3	No	No	Organics	-		-		1.00E-01	X /Subchronic	-
Iron	7439-89-6	No	No	Inorganics	-		-		7.00E-01	P /Subchronic	-
Manganese (Non-diet)	7439-96-5	No	No	Inorganics	-		-		2.40E-02	S /Chronic	5.00E-05
Methylcyclohexane	108-87-2	No	Yes	Organics	-		-		-		-
Sulfide	18496-25-8	No	No	Inorganics	-		-		-		-
Thallium (Soluble Salts)	7440-28-0	No	No	Inorganics	-		-		4.00E-05	X /Subchronic	-

Chemical	RfC Ref	GIABS	ARS	DRA	Soil Saturation Concentration (mg/kg)	S (mg/L)	K _。 \ (cm³/g)	K _a \ (cm³/g)	HLC (atm-m³/mole)	Henry's Law Constant Used in Calcs	H` and HLC Ref
	Kei	GIADS		KDA	(ilig/kg)	(IIIg/L)	(CIII /g)	_	(aun-in /inoie)	(unitide55)	Kei
Arsenic, Inorganic	C /Chronic	1	0.03	0.6	-	-	-	2.90E+01	-	-	
Carbazole		1	0.1	1	-	1.80E+00	9.16E+03	-	1.16E-07	4.74E-06	PHYSPROP
Dimethylphthalate		1	0.1	1	-	4.00E+03	3.16E+01	_	1.97E-07	8.05E-06	EPI
Iron		1	-	1	-	-	-	2.50E+01	-	-	
Manganese (Non-diet)	I/Chronic	0.04	-	1	-	-	-	6.50E+01	-	-	
Methylcyclohexane		1	-	1	6.76E+01	1.40E+01	2.34E+02	1.40E+00	4.30E-01	1.76E+01	PHYSPROP
Sulfide		1	-	1	-	-	-	-	-	-	
Thallium (Soluble Salts)		1	-	1	-	-	-	7.10E+01	-	-	

Chemical	Normal Boiling Point BP (K)	BP Ref	Critical Temperature TC (K)	TC Ref	Chemical Type	D _{ia} \ (cm²/s)	D _{iw} \ (cm²/s)	D _A \ (cm²/s)	Particulate Emission Factor (m³/kg)	Volatilization Factor (m³/kg)
Arsenic, Inorganic	888.15	PHYSPROP	1673	CRC89	INORGANIC	-	-	-	7.09E+07	-
Carbazole	627.85	PHYSPROP	899	YAWS	SVOC	4.17E-02	7.45E-06	-	7.09E+07	-
Dimethylphthalate	556.85	PHYSPROP	772	CRC89	SVOC	2.99E-02	7.14E-06	-	7.09E+07	-
Iron	3273.15	PERRY	9340	CRC89	INORGANIC	-	-	-	7.09E+07	-
Manganese (Non-diet)	2368.15	PHYSPROP	4325	CRC89	INORGANIC	-	-	-	7.09E+07	-
Methylcyclohexane	374.05	PHYSPROP	572.3	CRC89	VOC	7.00E-02	8.27E-06	1.36E-02	7.09E+07	3.94E+02
Sulfide	-		-		INORGANIC	-	-	-	7.09E+07	-
Thallium (Soluble Salts)	1730.15	PHYSPROP	4648.06	YAWS	INORGANIC	-	-	-	7.09E+07	-

Chemical	Ingestion SL TR=1E-06 (mg/kg)	Dermal SL TR=1E-06 (mg/kg)	SL	Carcinogenic SL TR=1E-06 (mg/kg)	Ingestion SL THQ=0.1 (mg/kg)	Dermal SL THQ=0.1 (mg/kg)	Inhalation SL THQ=0.1 (mg/kg)	Noncarcinogenic SL THI=0.1 (mg/kg)	Screening Level (mg/kg)
Arsenic, Inorganic	2.75E+01	1.72E+02	5.06E+03	2.36E+01	1.70E+01	1.06E+02	4.47E+02	1.42E+01	1.42E+01 nc
Carbazole	-	-	-	-	-	-	-	-	
Dimethylphthalate	-	-	-	-	3.39E+03	1.06E+04	-	2.57E+03	2.57E+03 nc
Iron	-	-	-	-	2.38E+04	-	-	2.38E+04	2.38E+04 nc
Manganese (Non-diet)	-	-	-	-	8.15E+02	-	1.49E+03	5.27E+02	5.27E+02 nc
Methylcyclohexane	-	-	-	-	-	-	-	-	
Sulfide	-	-	-	-	-	-	-	-	
Thallium (Soluble Salts)	=	=	-	-	1.36E+00	-	-	1.36E+00	1.36E+00 nc

Site-specific Construction Worker Risk for Soil - Other Construction Activities

Chemical	SF (mg/kg-day) ⁻¹	SF Ref	_	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	ABS	RBA	Soil Saturation Concentration (mg/kg)	S (mg/L)	K _{oc} \ (cm³/g)
Arsenic, Inorganic	1.50E+00	l	4.30E-03	l	3.00E-04	I /Chronic	1.50E-05	C /Chronic	1	0.03	0.6	-	-	-
Carbazole	_		-		-		-		1	0.1	1	_	1.80E+00	9.16E+03
Dimethylphthalate	_		-		1.00E-01	X /Subchronic	-		1	0.1	1	-	4.00E+03	3.16E+01
Iron	-		-		7.00E-01	P /Subchronic	-		1	-	1	-	-	-
Manganese (Non-diet)	_		-		2.40E-02	S /Chronic	5.00E-05	I /Chronic	0.04	-	1	-	-	-
Methylcyclohexane	_		-		-		-		1	-	1	6.76E+01	1.40E+01	2.34E+02
Sulfide	_		-		-		-		1	-	1	-	-	-
Thallium (Soluble Salts)	_		-		4.00E-05	X /Subchronic	-		1	-	1	_	-	-
*Total Risk/HI	-		-		-		-		-	-	-	-	-	-

Site-specific Construction Worker Risk for Soil - Other Construction Activities

Chemical	K _d \ (cm³/g)	HLC (atm-m³/mole)		H` and HLC Ref	Normal Boiling Point BP (K)	BP Ref	Critical Temperature TC (K)	TC Ref	Chemical Type	D _{ia} \ (cm²/s)	D _{iw} \ (cm²/s)	D _A \ (cm²/s)
Arsenic, Inorganic	2.90E+01	-	-		888.15	PHYSPROP	1673	CRC89	INORGANIC	-	-	-
Carbazole	-	1.16E-07	4.74E-06	PHYSPROP	627.85	PHYSPROP	899	YAWS	SVOC	4.17E-02	7.45E-06	=
Dimethylphthalate	-	1.97E-07	8.05E-06	EPI	556.85	PHYSPROP	772	CRC89	SVOC	2.99E-02	7.14E-06	-
Iron	2.50E+01	_	-		3273.15	PERRY	9340	CRC89	INORGANIC	-	-	-
Manganese (Non-diet)	6.50E+01	_	-		2368.15	PHYSPROP	4325	CRC89	INORGANIC	-	-	-
Methylcyclohexane	1.40E+00	4.30E-01	1.76E+01	PHYSPROP	374.05	PHYSPROP	572.3	CRC89	VOC	7.00E-02	8.27E-06	1.36E-02
Sulfide	-	_	-		-		-		INORGANIC	-	-	-
Thallium (Soluble Salts)	7.10E+01	_	-		1730.15	PHYSPROP	4648.06	YAWS	INORGANIC	-	-	-
*Total Risk/HI	-	-	-		-		-			-	-	-

Site-specific Construction Worker Risk for Soil - Other Construction Activities

Chemical	Particulate Emission Factor (m³/kg)	Volatilization Factor (m³/kg)		Ingestion Risk	Dermal Risk	Inhalation Risk	Carcinogenic Risk	Ingestion HQ	Dermal HQ	Inhalation HQ	Noncarcinogenic HI
Arsenic, Inorganic	7.09E+07	-	3.81E+00	1.38E-07	2.22E-08	7.54E-10	1.61E-07	2.25E-02	3.60E-03	8.53E-04	2.69E-02
Carbazole	7.09E+07	-	6.70E-02	-	-	-	_	-	-	-	_
Dimethylphthalate	7.09E+07	-	7.00E-02	-	-	-	_	2.06E-06	6.61E-07	-	2.72E-06
Iron	7.09E+07	-	8.29E+04	-	-	-	-	3.49E-01	-	-	3.49E-01
Manganese (Non-diet)	7.09E+07	-	7.94E+03	-	-	-	_	9.75E-01	-	5.33E-01	1.51E+00
Methylcyclohexane	7.09E+07	3.94E+02	1.20E-01	-	-	-	-	-	-	-	_
Sulfide	7.09E+07	-	6.22E+02	-	-	-	-	-	-	-	-
Thallium (Soluble Salts)	7.09E+07	-	2.36E+00	-	-	-	-	1.74E-01	-	-	1.74E-01
*Total Risk/HI	-	-	-	1.38E-07	2.22E-08	7.54E-10	1.61E-07	1.52E+00	3.60E-03	5.34E-01	2.06E+00

Appendix D-3

Construction Worker – Groundwater

Site-specific Recreator Equation Inputs for Surface Water

* Inputted values different from Recreator defaults are highlighted.

Variable	Recreator Surface Water Default Value	Form-input Value
BW _{0.5} (body weight) kg	15	0
BW _{2.6} (body weight) kg	15	0
BW _{6.16} (body weight) kg	80	0
BW _{16.30} (body weight) kg	80	80
BW ₃ (body weight - adult) kg	80	80
BW (body weight - adult) kg	80	80
DFW _{recardi} (age-adjusted dermal factor) cm ² -event/kg		5510.938
$DFWM_{_{roc.adj}} \text{ (mutagenic age-adjusted dermal factor) cm} ^2\text{-event/kg}$		5510.938
ED (exposure duration - recreator) years	26	1
ED _{n.2} (exposure duration) years	2	0
ED _{2.6} (exposure duration) years	4	0
ED _{6.16} (exposure duration) years	10	0
ED _{16.30} (exposure duration) years	10	1
ED _{reca} (exposure duration - adult) years	20	1
EF _{rec.vv} (exposure frequency) days/year		125
EF _{n.2} (exposure frequency) days/year		0
EF _{2.6} (exposure frequency) days/year		0
EF _{6.16} (exposure frequency) days/year		0
EF _{16.30} (exposure frequency) days/year		125
EF _{rec.a} (adult exposure frequency) days/year		125
ET _{n.2} (exposure time) hours/event		0
ET _{2,6} (exposure time) hours/event		0
ET _{6.16} (exposure time) hours/event		0
ET _{16,30} (exposure time) hours/event		8
ET _{reca} (adult exposure time) hours/event		8
EV _{n.2} (events) events/day		0
EV _{2.6} (events) events/day		0
EV _{6.16} (events) events/day		0
EV ₁₆₋₃₀ (events) events/day		1

Site-specific Recreator Equation Inputs for Surface Water

* Inputted values different from Recreator defaults are highlighted.

Variable	Recreator Surface Water Default Value	Form-input Value
EV _{rac.a} (adult) events/day		1
THQ (target hazard quotient) unitless	0.1	1
IFW rac-adjusted water intake rate) L/kg		0.125
IFWM recardi (mutagenic age-adjusted water intake rate) L/kg		0.125
IRW ,, (water intake rate) L/hour	0.12	0
IRW _{2.6} (water intake rate) L/hour	0.12	0
IRW _{6.16} (water intake rate) L/hour	0.071	0
IRW _{16,30} (water intake rate) L/hour	0.071	.01
IRW (water intake rate - adult) L/day	0.071	0.01
IRW (water intake rate - adult) L/hr	0.071	0.01
LT (lifetime - recreator) years	70	70
SA _{n.} , (skin surface area) cm ⁻²	6365	0
SA _{2.6} (skin surface area) cm ⁻²	6365	0
SA _{6.16} (skin surface area) cm ⁻²	19652	0
SA _{16,30} (skin surface area) cm ⁻²	19652	3527
SA _{rer} (skin surface area - adult) cm ⁻²	19652	3527
SA _{raca} (skin surface area - adult) cm ⁻²	19652	3527
Apparent thickness of stratum corneum (cm)	0.001	0.001
TR (target risk) unitless	1.0E-06	1.0E-05

Recreator Regional Screening Levels (RSL) for Surface Water

	CAS				Chemical	0	SF _o	RfD	RfD	RfC
Chemical	Number	Mutagen?	Volatile?	Type	Type	(mg/kg-day) -1	Ref	(mg/kg-day)	Ref	(mg/m³)
Arsenic, Inorganic	7440-38-2	No	No	Inorganics	Inorganics	1.50E+00	- 1	3.00E-04	I /Chronic	1.50E-05
Benzene	71-43-2	No	Yes	Organics	Organics	5.50E-02	- 1	1.00E-02	P /Subchronic	8.00E-02
Iron	7439-89-6	No	No	Inorganics	Inorganics	-		7.00E-01	P /Subchronic	-
Tetrachloroethylene	127-18-4	No	Yes	Organics	Organics	2.10E-03	- 1	1.00E-01	H /Subchronic	4.00E-02
Trichloroethylene	79-01-6	Yes	Yes	Organics	Organics	4.60E-02	- 1	5.00E-04	I /Chronic	2.00E-03

Chemical	RfC Ref	RAGSe GIABS (unitless)	K٫\ (cm/hr)	MW	FA (unitless)	In EPD?	DA _{event (ca)}	DA (nc child)t	DA (nc advir)t	Ingestion SL TR=1E-05 (ug/L)	Dermal SL TR=1E-05 (ug/L)
Arsenic, Inorganic	C /Chronic	1	0.001	74.922	1	Yes	0.0309082	-	0.0198696	1.36E+03	3.86E+03
Benzene	P /Subchronic	1	0.0149	78.115	1	Yes	0.8429517	-	0.6623193	3.72E+04	6.88E+03
Iron		1	0.001	55.847	1	Yes	-	-	46.362348	-	-
Tetrachloroethylene	I/Chronic	1	0.0334	165.83	1	Yes	22.077306	-	6.6231925	9.73E+05	7.40E+04
Trichloroethylene	I /Chronic	1	0.0116	131.39	1	Yes	1.0018658	-	0.033116	4.42E+04	9.80E+03

Chemical	Carcinogenic SL TR=1E-05 (ug/L)	Ingestion SL (Child) THQ=1 (ug/L)	Dermal SL (Child) THQ=1 (ug/L)	Noncarcinogenic SL (Child) THQ=1 (ug/L)	Ingestion SL (Adult) THQ=1 (ug/L)	Dermal SL (Adult) THQ=1 (ug/L)	Noncarcinogenic SL (Adult) THQ=1 (ug/L)	Screening Level (ug/L)
Arsenic, Inorganic	1.01E+03	-	-	-	8.76E+02	2.48E+03	6.48E+02	6.48E+02 nc
Benzene	5.81E+03	-	-	-	2.92E+04	5.41E+03	4.56E+03	4.56E+03 nc
Iron	-	-	-	-	2.04E+06	5.80E+06	1.51E+06	1.51E+06 nc
Tetrachloroethylene	6.87E+04	-	-	-	2.92E+05	2.22E+04	2.06E+04	2.06E+04 nc
Trichloroethylene	8.02E+03	-	-	-	1.46E+03	3.24E+02	2.65E+02	2.65E+02 nc